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Anomaly Detection in COVID-19 Time-Series Data

Hajar Homayouni · Indrakshi Ray · Sudipto

Ghosh? · Shlok Gondalia · Michael G. Kahn

Abstract Anomaly detection and explanation in big volumes of real-world medi-
cal data, such as those pertaining to COVID-19, pose some challenges. First, we are
dealing with time-series data. Typical time-series data describe behavior of a single
object over time. In medical data, we are dealing with time-series data belonging to
multiple entities. Thus, there may be multiple subsets of records such that records
in each subset, which belong to a single entity are temporally dependent, but the
records in different subsets are unrelated. Moreover, the records in a subset con-
tain different types of attributes, some of which must be grouped in a particular
manner to make the analysis meaningful. Anomaly detection techniques need to
be customized for time-series data belonging to multiple entities. Second, anomaly
detection techniques fail to explain the cause of outliers to the experts. This is
critical for new diseases and pandemics where current knowledge is insufficient.
We propose to address these issues by extending our existing work called IDEAL,
which is an LSTM-Autoencoder based approach for data quality testing of sequen-
tial records, and provides explanations of constraint violations in a manner that
is understandable to end-users. The extension (1) uses a novel two-level reshaping
technique that splits COVID-19 datasets into multiple temporally-dependent sub-
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sequences, and (2) adds a data visualization plot to further explain the anomalies
and evaluate the level of abnormality of subsequences detected by IDEAL.

We performed two systematic evaluation studies for our anomalous subse-
quence detection. One study uses aggregate data, including the number of cases,
deaths, recovered, and percentage of hospitalization rate, collected from a Covid
tracking project, New York Times, and Johns Hopkins for the same time period.
The other study uses COVID-19 patient medical records obtained from Anschutz
Medical Center health data warehouse. The results are promising and indicate
that our techniques can be used to detect anomalies in large volumes of real-world
unlabeled data whose accuracy or validity is unknown.

Keywords Anomaly detection · Data quality tests · COVID-19 data · Explain-
ability · LSTM-Autoencoder · Time series

1 Introduction

Large amounts of data records are being collected from various sources over time
to analyze the immediate and long-term impacts of COVID-19 on human health.
Examples include the analysis of the impacts [46], diagnosis [25], treatments [17],
and pre-symptom detection [38] of COVID-19 based on the available data collected
from radiography, chest CT, chest X-ray, wearable devices, and COVID-19 track-
ing reports. Such data records are assumed to be accurate. However, the records
may get corrupted in the non-trivial data collection and transformation processes.
Anomalous data may lead to incorrect inferences and research findings. Thus, it
is critical to automatically find inaccurate or anomalous data before doing any
analysis and explain how the data is anomalous to the healthcare professionals.

Existing anomaly detection techniques for COVID-19 data (some based on
machine learning) focus only on outbreak detection [28,26,52,11] in the COVID-19
tracking cases across the world. Machine learning approaches [49,30,48] have also
been used for data quality assurance in other domains. Many of these techniques
use supervised machine learning, which assumes the existence of labeled training
data which in real-world is unavailable for new forms of outbreaks such as COVID-
19. Moreover, outlier detection using machine learning fails to explain how records
are anomalous to the domain experts. Finally, most works [15,14,16,44,21,23]
identifying anomalous records in a dataset cannot be used on time-series data as
anomalies may span multiple attributes and records in a sequence [35]. We aim
to eliminate the above shortcomings by detecting anomalies in COVID-19 time-
series data without having access to labeled data and explaining the anomalies to
domain experts in a comprehensible manner.

This approach, called IDEAL, builds upon our previous work on data quality
assessment approach [22] that uses an LSTM-Autoencoder [30] network to find
anomalies in unsupervised data. Anomalies are data records or subsequences of
data records whose behaviors (i.e., attribute values or change in the values over
time) are significantly different from the majority of records and subsequences in a
time-series dataset [28]. IDEAL automatically (1) discovers different types of con-
straints from the sequence data, (2) marks subsequences and records that violate
the constraints as suspicious, and (3) explains the violations. IDEAL automatically
generates three types of visualizations to explain the anomalies. The plot showing
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the suspiciousness score per attribute indicates which attributes make the subse-
quence anomalous. The second visualization uses decision trees to illustrate the
violated constraints. The third plot compares a suspicious subsequence detected
by IDEAL with normal subsequences belonging to the same dataset. The approach
incorporates feedback from domain experts to improve the accuracy of constraint
discovery and anomaly detection. We proposed an autocorrelation-based reshaping
technique that automatically adjusts the LSTM-Autoencoder input window size
based on how far the records are related to their past values. We evaluated the
effectiveness of IDEAL using datasets from Yahoo servers [9], NASA Shuttle [4],
and Colorado State University Energy Institute [2]. We demonstrated that IDEAL
could detect previously known and injected anomalies in these datasets.

The above mentioned work needs to be extended for COVID-19 time-series
data. The Yahoo servers [9] and NASA Shuttle [4] datasets that we previously used
contain time-series data associated with a single entity; COVID-19 time-series data
belongs to multiple entities (e.g., cases and deaths for states and counties, or lab
test type and test name for different patients. Thus, in COVID-19 data there are
multiple subsets of data each of which belongs to a single entity. Records in each
subset are temporally dependent but they are unrelated to records in other subsets.
Moreover, in each subset there are multiple grouping attributes (e.g., test type and
test name) which requires the data to be preprocessed to make the results correct.
We extend IDEAL by using a two-level reshaping approach to transform data
into a shape that is suitable for analysis. This approach removes the restriction
that all data records in a sequence dataset must be temporally dependent and
are describing behaviors of the same object over time. Instead, IDEAL supports
datasets in which a subset of records are temporally related to each other but are
unrelated to the records from other subsets in the same dataset. For example, a
health data store may contain medical records of multiple patients over time. The
records of each patient are temporally dependent but independent from those of
other patients.

One näıve solution may be to directly split the data based on grouping at-
tribute(s) and generate multiple temporally-dependent subsequences. However,
such a solution does not preserve associations among grouping attribute values.
Consequently, IDEAL uses a pivoting-based approach to split data into multi-
ple independent subsequences in a manner that preserves the associations among
grouping attribute values.

In addition, IDEAL also offers an explanation of the anomalous behavior. It
provides a data visualization plot that explains the level of abnormality of anoma-
lous subsequences detected by the approach. This plot visualizes the data over time
to help a domain expert understand the difference between the attribute values of
a suspicious subsequence with those of other subsequences in the dataset. Such a
plot draws attention to the anomalous subsequences; this is especially useful for
large volumes of data where there is a lack of domain knowledge.

We conduct two types of studies to evaluate the anomaly detection effectiveness
of IDEAL in the absence of domain knowledge. The first study validates the level
of abnormality of an anomalous subsequence generated from a data source that
is detected by IDEAL by comparing it with subsequences generated from other
data sources that are reporting the same information. The data sources we use to
conduct this study are COVID-19 tracking data collected from Johns Hopkins [5],
New York Times [1], and COVID Tracking project [7] repositories. We demonstrate
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that IDEAL can detect anomalous subsequences which are indeed outliers when
compared with other datasets reporting the same information.

The second study validates the level of abnormality of the suspicious sub-
sequences by comparing the suspicious subsequences detected by IDEAL against
other subsequences generated from the same dataset. Here the datasets correspond
to a homogeneous population, i.e., a phenotype of people with the same values for
personal (e.g., gender and age) and medical (e.g., diagnosis category, disease type,
and medication type) attributes. We use COVID-19 medical data collected from
the health data warehouse in Anschutz medical campus [3]. We demonstrate that
IDEAL can detect abnormal subsequences from the datasets under test.

The contributions of this work are as follows:

– We propose a two-level reshaping technique to prepare data for training the
LSTM-Autoencoder model. Thus, the preprocessing step that we develop al-
lows IDEAL to be used on different types of time-series data, possibly grouped
by different attributes, and belonging to multiple entities.

– We propose a data visualization plot to explain the level of abnormality of
the subsequences detected by IDEAL. This helps the domain experts quickly
identify the anomalous portions of data in large datasets.

– We propose systematic validation techniques based on a comparison between
suspicious and other subsequences to demonstrate the anomaly detection ef-
fectiveness of IDEAL. Such a method is useful when there is a lack of labeled
data or where there is insufficient domain knowledge.

The value of this work lies in automating the process of detecting and explain-
ing potential anomalies that allow clinicians who have domain knowledge but lack
data science skills to evaluate the effect of the level of abnormality and the seri-
ousness of an anomaly on the clinical research question they are seeking to answer
from the COVID-19 data. Due to the large number of investigators who intend to
use the COVID-19 data, the use of the approach could potentially benefit a wide
range of clinical investigators. This work can also be used for other domains that
are analyzing large volumes of unlabeled time-series data that belong to multiple
entities.

The rest of the paper is organized as follows. Section 2 describes the related
work. Section 3 provides an overview of IDEAL. Section 4 describes how we handle
time-series data belonging to multiple independent objects. Section 5 discusses
anomaly interpretation in depth. Section 6 presents the evaluation of our approach.
Section 7 concludes the paper and outlines directions for future work. Appendix A
explains the architecture of the LSTM-Autoencoder network.

2 Related Work

The existing anomaly detection techniques in COVID-19 data focus only on out-
break detection [28,26,52,11] in the COVID-19 tracking cases across the world.
Karadayi et al. [28] used a hybrid autoencoder network composed of a 3D convo-
lutional neural network (CNN) and an autocorrelation based network for outbreak
detection from spatio-temporal COVID-19 data provided by the Italian Depart-
ment of Civil Protection. Jombart et al. [26] used linear regression, generalised
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linear models (GLMs), and Bayesian regression to detect sudden changes in po-
tential COVID-19 cases in England. However, there has been no focus on quality
assurance of COVID-19 data used for various analysis.

Machine Learning-based techniques used for outlier detection in non-sequence
data, such as Support Vector Machine (SVM) [15], Local Outlier Factor (LOF) [14],
Isolation Forest (IF) [16], and Elliptic Envelope (EE) [44] have been used to detect
anomalous records from time series data [42]. Such approaches do not consider
temporal dependencies between data records and can only detect trivial out-of-
range outliers.

Techniques that detect anomalous records from time-series data can be catego-
rized as decomposition and modeling techniques. Decomposition techniques, suitable
only for univariate time series, break a time series into level, trend, seasonality,
and noise components and monitor the noise components to capture the anomalous
records [24,33]. Modeling techniques represent a time series as a linear/non-linear
function that associates each current value to its past values, predict the value of
a record at a specific time, and report as anomalies those records whose prediction
error falls outside a threshold. Stochastic modeling techniques, such as Moving Av-
erage (MA) [31], Autoregressive Integrated Moving Average (ARIMA) [37], and
Holt-Winters (HW) [20] use statistical measures to calculate the correlation be-
tween the data records. These techniques assume that the time series is linear and
follows a known statistical distribution, which make them inapplicable to many
practical problems [10]. Machine learning modeling techniques support non-linear
modeling, with no assumption about the distribution of the data [10]. Examples are
Multi Layer Perceptrons (MLPs) [13], Long Short Term Memory (LSTM) [49], and
Hierarchical Temporal Memory (HTM) [48]. Some of these techniques can model
multivariate time-series. However, they produce complex equations, which are not
human interpretable.

Existing techniques for anomalous sequence detection split the data into mul-
tiple subsequences, typically based on a fixed-size window [39] or an exhaustive
brute-force approach [45]. Clustering-based anomalous sequence detection tech-
niques extract subsequence features, such as trend and seasonality, and group the
subsequences based on the similarities between their features. An anomalous sub-
sequence is detected as the one that is distantly positioned within a cluster or
is positioned in the smallest cluster. These approaches only detect anomalous se-
quences without determining the records and attributes that are the major causes
of invalidity in each subsequence. Autoencoder-based techniques (1) take subse-
quences as input, (2) use an autoencoder network to reconstruct the subsequences,
(3) assign invalidity scores based on the reconstruction errors to the subsequences,
and (4) detect as anomalous those subsequences whose scores are greater than a
threshold. These techniques can learn complex non-linear associations among the
attributes in the time series but are not able to model the temporal dependencies
among the records in the input subsequence. An LSTM-Autoencoder extends an
autoencoder for time series data, and captures long-term temporal associations
among data records in the form of complex equations that are not human inter-
pretable. Our work aims to fill this gap by illustrating the cause of anomaly to the
domain experts.
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3 Approach

Figure 1 shows an overview of our approach. The input is in the form of data
records and the output consists of a report showing subsequences of suspicious
records accompanied with an explanation of the violated constraints. There are five
components, namely, data preparation, constraint discovery, anomaly detection,
anomaly interpretation, and anomaly inspection. These components form the basis
of IDEAL [22] and are briefly described in the following paragraphs. Sections 4
and 5 describe how the data preparation and anomaly interpretation components
are extended in this paper.

Fig. 1: IDEAL Overview [22]

Data Preparation This component prepares the data by transforming raw data into
a form suitable for analysis. We used the one-hot encoding [50] method for pre-
processing categorical attributes and the normalization [41] method for numeric
attributes. Moreover, we proposed a systematic reshaping approach that uses au-
tocorrelation [40] of the time-series attributes to enable the LSTM-Autoencoder
network discover dependencies between highly correlated records. Note that, this
step must be extended to handle COVID-19 data. The extensions are described in
Section 4.

Constraint Discovery IDEAL uses an LSTM-Autoencoder, which is a sequence-
to-sequence modeling technique [34] used to learn time series dependencies. An
LSTM-Autoencoder can discover constraints involving long-term non-linear asso-
ciations among multivariate time-series data records and attributes. The input and
output to this network are fixed-size time series matrices. The network is composed
of two hidden LSTM layers. The first LSTM layer functions as an encoder that
investigates the dependencies from the input sequence and produces a complex
hidden context. The second LSTM layer functions as a decoder that reconstructs
the input sequence, based on the learned complex context and the previous out-
put state. The difference between the original input and the reconstructed input is
termed as the reconstruction error. Appendix A describes the architecture of the
LSTM-Autoencoder network.

The LSTM-Autoencoder is an unsupervised technique that can potentially
learn incorrect constraints from invalid data and generate false alarms. IDEAL
uses an interactive learning approach that takes the expert’s feedback through
the anomaly inspection component to retrain the LSTM-Autoencoder model and
improve its accuracy.
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Anomaly Detection This component detects suspicious subsequences and records
that do not conform to the constraints represented by the trained model. Sub-
sequence and records are assigned suspiciousness scores (s-scores), which are cal-
culated based on the network reconstruction error and the record labels. The
record label indicates the validity level of the record. If we start with an unlabeled
dataset, the labels of all records are 0. The record label changes as we incorporate
domain expert feedback in the subsequent iterations. Subsequences and records
whose scores are greater than a threshold are flagged as suspicious. Using record
labels in the definition of s-scores ensures that no valid subsequences or records are
reported as suspicious in the retraining phase, thereby minimizing false alarms.

Anomaly Interpretation This component helps a domain expert interpret each sus-
picious subsequence by generating visualization plots of two types, namely, s-score
per attribute and decision tree. The trained LSTM-Autoencoder model calculates
the s-score per attribute. The higher the value of s-score, the more likely is the
attribute to contribute to the invalidity of the subsequence. For each subsequence,
IDEAL plots the s-score values for all the attributes in the subsequence. More-
over, IDEAL uses a decision tree [32] based technique called random forest [27]
classifier to determine the constraints that are violated by each suspicious subse-
quence. For each attribute of the subsequence, a set of time series features, such
as Mean, Max, and Curvature are extracted using Tsfeatures [43] CRAN library.
Next, decision trees are generated using these features. The decision trees repre-
sent a set of if-then-else decision rules, which describe the constraints that identify
sequences as valid or invalid based on their feature values. Note that, our anomaly
interpretation component is extended in Section 5.

Anomaly Inspection This component takes domain expert feedback through a web-
based user interface that uses check boxes for the expert to flag as faulty the sub-
sequences that are actually anomalous. The feedback is incorporated to label the
training data records as faulty or valid. The accuracy of constraint discovery is
improved by adding the record label with four possible values (1: faulty, 0.5: sus-
picious, 0: unknown, and -1: valid) as a new attribute to the training dataset. This
label is updated using domain expert feedback in every interaction. We redefine
the reconstruction error of LSTM-Autoencoder based on the labels to minimize
false alarms. The network is trained to minimize both the difference between the
time series and its reconstruction, and the difference between the record labels in
a time series and the labels predicted by the network.

4 Extension to Data Preparation

Analyzing COVID-19 time series data requires that the data be converted to a
form suitable for analysis. In COVID-19 data, there are multiple subsets of data;
records in each subset are temporally dependent but they are unrelated to records
in other subsets. Such data must be prepared before being fed as input to sequen-
tial learning models, including the LSTM-based model used in this study, which
assumes that all data records in an input sequence are temporally dependent and
are describing behaviors of the same object over time.
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A time series T is a sequence of d-dimensional records [29] described using the
vector T = 〈R0, ..., Rt−1〉, where Ri = (a0i , ..., a

d−1
i ) is a record at time i, for 0 ≤ i ≤

t − 1 and aji is the jth attribute of the ith record. A time series can be univariate

(d=1) or multivariate (d>1) [19]. A univariate time series has one time-dependent
attribute. For example, a univariate time series can consist of daily COVID-19
cases recorded sequentially over 24-hour increments. A multivariate time series
is used to simultaneously capture the dynamic nature of multiple attributes. For
example, a multivariate time series from a health data store can consist of multiple
laboratory results of patients over time.

Reshaping is an essential data preparation step for sequential learning models
[12,36]. This method reshapes the data to base the model computations at a time
step t on a specified number of previous time steps. The number of previous time
steps is known as window size.

Existing reshaping techniques use a single-level windowing approach, which
assumes that all data records in a dataset are temporally dependent and are de-
scribing behaviors of a single object over time. For example, all the traffic data
in the Yahoo Benchmark data store [9] are records related to a single server. The
NASA Shuttle dataset [4] contains records of a single shuttle over time. However,
real-world datasets including the ones used in this study typically contain records
of multiple objects over time. For example, a COVID-19 tracking dataset can
store case records of multiple states over time in the US. A medical dataset may
contain clinical records for multiple patients over time. Each object (i.e., state in
the COVID-19 dataset and patient in the medical dataset) has a unique id, which
distinguishes the records concerning that object from the other records in the
dataset. Single-level reshaping techniques cannot be used to split the data records
into multiple subsequences in such datasets. These techniques may generate sub-
sequences with temporally unrelated records, which can result in generating false
alarms. For example, Table 1 shows a portion of records (i.e., for Patient ID=1001
and Patient ID=1005) in a medical dataset that stores patient weights over time.

Table 1: Patient Weights Sequence

Patient ID Timestamp Weight
1001 6/1/2020 125.2
1001 7/1/2020 125.6
1005 7/1/2020 26.5
1001 8/1/2020 126.1
1005 8/1/2020 27

Splitting this dataset through single-level reshaping using window size equal
to three with one record overlap results in two subsequences (Figure 2), which
contain unrelated records.

However, the correct windowing must only contain temporally-related records
of a single object (Figure 3). An anomaly detection technique may incorrectly
detect subsequence 1 and 2 in Figure 2 as anomalous (i.e., two false positives)
because of the sudden changes in the Weight values. Figure 3 shows the correct
reshaping for our example.
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Fig. 2: Incorrect Reshaping of Patient Records into Multiple Subsequences

Fig. 3: Correct Reshaping of Patient Records into Multiple Subsequences

In this work, we propose a two-level reshaping technique to address the above-
mentioned issue. This technique (A) groups the time-series data based on domain-
dependent grouping attributes, and (B) splits the data records in each group using
our systematic autocorrelation-based reshaping [22] approach.

4.1 Grouping Data Records

We split the data records into multiple temporally dependent groups. For this pur-
pose, we (1) identify grouping attributes and their hierarchy, (2) concatenate the
non-first-level grouping attributes into a new attribute, (3) pivot the new attribute
into multiple temporal attributes, and (4) use the first-level grouping attribute to
split the data records into multiple temporally-dependent subsequences.

(1) Identify grouping attributes. A grouping attribute is a categorical column
by which we can group the dataset records into multiple temporally-dependent
subsequences. A dataset may have one or more grouping attributes, which are
domain-dependent. Figure 4a shows an example of a medical dataset of labora-
tory results for multiple patients over time. This dataset contains three levels of
grouping attributes to describe the data records. The first-level grouping attribute
(i.e., Patient ID) indicates the objects in a dataset, each of which is represented
by a unique Id. The second- to h-level grouping attributes indicate features about
those objects. For example, in Figure 4a, the second-level grouping attribute (i.e.,
Test Type) represents the type of laboratory test. Each patient can receive multi-
ple types of test. The third-level grouping attribute (i.e., Test Name) is the name
of the laboratory test performed on the patients. Each Test Type includes multi-
ple Test Name. We identify the domain-dependent grouping attributes with the
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(a) Original Dataset with Multiple Grouping Attributes (b) Dataset after Concatenating Non-first-level Grouping
Attributes

(c) Dataset after Pivoting Second-level Grouping Attribute

(d) Dataset after Reshaping Using W = 2

Fig. 4: Splitting a Dataset with Multiple Grouping Attributes into Multiple
Temporally-Dependent Subsequences

help from domain experts. In the future, we will use statistical autocorrelation-
based [18] techniques to automatically identify the grouping attributes and their
hierarchy from an input dataset.

(2) Concatenate non-first-level grouping attributes. Our approach converts
all the non-first-level grouping attributes into a single dataset column to reduce
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the complexity (i.e., dimensionality) of the problem. We call this new column the
second-level grouping attribute. Figure 4b shows the new generated column from
all the non-first-level grouping attributes.

At this step, we can use the first- and second-level attributes to group the data
into multiple temporally dependent subsequences. However, using the resulting
subsequences generated by this approach, time-series analysis techniques will not
preserve the associations among the values of second-level attribute if any. For
example, if there are associations among “Blood-Sugar” and “Blood-Pressure” of
a patient, grouping at this stage would not preserve this association. To address
this issue, our approach uses another step for pivoting the second-level attribute
into multiple temporal attributes based on the attribute values.

(3) Pivot second-level grouping attribute. A pivoting query [6] converts all
unique rows of an attribute into separate columns of their own, each of which
contains a value specified as an input to the query. IDEAL pivots the second-level
grouping attribute to generate multiple temporal attributes. The objective is to
preserve the associations among grouping attribute values. Pivoting results in a
smaller number of records in comparison to the original dataset.

Figure 4c shows how the pivoting process works in the example dataset. The
second-level grouping attribute (i.e., a concatenation of Test Type and Test Name)
is converted into five new attributes, each of which contains the corresponding test
result stored in the value attribute. If a patient has not received a specific test at
a specific time, the value of that test is set to Null.

(4) Group records by first-level grouping attribute. We use the first-level
grouping attribute to categorize the data records in a sequence dataset into mul-
tiple groups Gi, 1 ≤ i ≤ m, where m is the number of the distinct values of that
attribute. Figure 4c shows the two groups of temporally-dependent records (i.e.,
G1 and G2) generated for the example dataset.

4.2 Autocorrelation-based Reshaping of Groups

For each group, IDEAL uses a systematic reshaping approach that we proposed
in an earlier work [22] to split the data records in that group. This approach is
based on the autocorrelation of the time series attributes to enable the LSTM-
Autoencoder network discover dependencies between the records that are highly
correlated. The input size is adjusted based on how far the records in a group
are related to their past values. By feeding the LSTM-Autoencoder network with
highly correlated records, this reshaping approach prevents the network from in-
correctly discovering associations among non-correlated records. For each group
Gi, IDEAL uses the autocorrelation-based approach to identify the window size
wi for that group. Autocorrelation is defined as the correlation of sequence data
records with the records in the previous time steps, called lags [40]. An Autocorre-
lation Function (ACF [18]) at lag k for an attribute identifies to what extend the
attribute is correlated to its kth past value. IDEAL calculates ACF to identify the
lags at which the attribute values are highly correlated to set the window size. As
the LSTM-Autoencoder window size must be similar for all the data records in a
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dataset, IDEAL sets the final value of window size W to the smallest value of win-
dow sizes calculated for the groups (Equation 1). Finally, our approach reshapes
the data records in groups based on the value of W .

W = Min(wi), 1 ≤ i ≤ m (1)

where m is the number of distinct values of the grouping attribute. Figure 4d
shows how IDEAL splits the records in each group into multiple subsequences for
W = 2.

5 Extension to Anomaly Interpretation

IDEAL uses an additional data visualization plot to explain the level of abnor-
mality of suspicious subsequences. This plot visualizes attribute values for multi-
ple groups (e.g., state in COVID-19 dataset and patient in medical dataset) over
time. The visualization plot uses color-coded diagrams for every group to help a
domain expert compare a suspicious subsequence with other subsequences from
other groups in the dataset.
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For each suspicious subsequence, IDEAL uses s-score per attribute values [22]
to select the attribute with the highest suspiciousness score. Next, IDEAL plots
values of that attribute for all the groups (i.e., Gi, 1 ≤ i ≤ m) over time. The
attribute values of the suspicious subsequence are represented by red points. Fig-
ures 5 and 6 shows the visualization plots generated for a suspicious subsequence
detected from the laboratory results in the Anschutz medical data. Figure 5 shows
that e TOTGLOB attribute (i.e., total serum globulin) is the major cause of in-
validity (i.e., attribute with the highest s-score value) in this subsequence. The
data visualization plot in Figure 6 shows the values of the e TOTGLOB attribute
over time for this subsequence (in red) as well as other subsequences (in colors
other than red) in the same dataset. We can visually observe from this figure how
the values of e TOTGLOB for this patient deviate from those of the majority of
the patients in the dataset. As the value of this attribute is elevated in certain
immunological diseases, this deviation can be caused by an immunological disease
of the patient.

6 Evaluation

We evaluated the anomaly detection effectiveness of IDEAL using COVID-19
records from Johns Hopkins (JH) [5], New York Times (NT) [1], and Tracking
project (T) [7] repositories. These publicly available datasets are updated daily
and contain county- or state-level COVID-19 attributes. Wissel et al. [47] com-
pared these datasets based on different factors, such as their data sources, collected
attributes, region granularity, and frequency of updates. We used nine-month data
from March 5th to November 11th, 2020 to evaluate one execution of IDEAL, which
is an execution without the feedback loop. Moreover, we used four health datasets
from the University of Colorado Anschutz medical campus [3] to evaluate the
anomaly detection effectiveness of IDEAL. We used records of COVID-19-positive
patients to evaluate one execution of IDEAL.

Current knowledge about the COVID-19 data attributes, pattern of spread,
and distribution is insufficient as this is an unprecedented pandemic. We used
two evaluation approaches to validate the suspicious subsequences detected from
the COVID-19 data in the domain knowledge absence; these are (1) comparing
suspicious subsequences detected by IDEAL from one data source to those from
other independent sources that are recording values of the same records and at-
tributes and (2) comparing the suspicious subsequences detected by IDEAL from
a homogeneous population with the other subsequences in that population.

6.1 Comparing suspicious subsequences from different sources (Johns Hopkins
(JH), New York Times (NT), and Tracking project (T))

The objective is to identify whether or not a suspicious subsequence is actually
anomalous by comparing the suspicious subsequence from a data source with its
equivalent subsequences from other independent COVID-19 data repositories. Two
subsequences are equivalent if they contain records of same object (i.e., same
grouping attribute value) and are observed during the same time period. For ex-
ample, data records of the Alabama state collected from three sources of data



Anomaly Detection in COVID-19 Time-Series Data 15

during March to April 2020 form three equivalent subsequences. We formalized
possible observations on equivalent subsequences to validate a suspicious subse-
quence based on whether (1) the same subsequence is detected by IDEAL as
suspicious from all available sources of data or (2) the subsequence is detected as
anomalous only in some of the available sources. We decided on whether or not
each suspicious subsequence is actually anomalous based on a distance measure
(i.e. mean square error (MSE)) between the attribute values of the suspicious sub-
sequence detected from a source with those of equivalent subsequences collected
from the other data sources.

For each suspicious subsequence si detected from the ith source in a set of
sources D (where |D| = n), we calculated the mean square error value between
si and all its equivalent subsequences sj from the other sources (1 ≤ j ≤ n and
j 6= i). sj can be either an undetected or a suspicious subsequence.

MSE(si, sj) =
1

w

w∑
k=1

(Normalized(Af
i ) −Normalized(Af

j ))2 (2)

where Af
i attribute is the major cause of invalidity in si, Af

j is its equivalent
attribute in sj , and w is the window size. The following four cases describe how
we validated a suspicious subsequence si based on the MSE value.

(A) If attribute values of equivalent subsequences to si collected from all other
sources of data are close to values of si, then all of those subsequences are
either abnormal but valid, or anomalous detected from the same source. An
abnormal subsequence can indicate signals of a COVID-19 outbreak [28].

If ∀j ∈ {1, ..., n},MSE(si, sj) ≤ Threshold, then si and sj are either
– Abnormal but valid, or
– Anomalous collected from the same source

(B) If attribute values of equivalent subsequences to si collected from all other
sources of data are far from values of si but close to one another, then si is
anomalous:

If ∀j, k ∈ {1, ..., n} (j, k 6= i),MSE(si, sj) > Threshold and MSE(sj , sk) ≤
Threshold, then si is:
– Anomalous

(C) If attribute values of si are close to a subset of equivalent subsequences to si
but far from another subset of equivalent subsequences, then all subsequences
in the smaller subset are anomalous:

If ∀j ∈ D1, k ∈ D2 (D1 ∪D2 = D, D1 ∩D2 = ∅, |D1| < |D2|),MSE(si, sj) ≤
Threshold and MSE(si, sk) > Threshold, then:
– si and sj are anomalous, and
– sk is valid
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(D) If attribute values of si are close to a subset of equivalent subsequences to si
but far from another subset of equivalent subsequences and the two subsets
are of the same size, then all subsequences in both subsets are abnormal and
need more investigations by a domain expert:

If ∀j ∈ D1, k ∈ D2 (D1 ∪D2 = D, D1 ∩D2 = ∅, |D1| = |D2|),MSE(si, sj) ≤
Threshold and MSE(si, sk) > Threshold, then:
– si, sj , and sk are abnormal and need more investigation

Table 2: Datasets

Experiment
ID

Datasets
(Sources)

Attributes

1 State-level data
from JH, NT, and
T

Confirmed Cases (i.e.,
JH.Confirmed, NT.cases,
T.positive) and Deaths

2 State-level data
from JH and T

Recovered and Hospitaliza-
tion Rate

We ran two experiments. Table 2 shows the attributes from the COVID-19
datasets used for each experiment. Figure 7 shows data visualization plots for
suspicious subsequences detetced by IDEAL from datasets of the first experiment.

In this figure, each color represents data of a state. There are 50 plots for the 50
states of the US. The red plot represents the data of the suspicious subsequence. We
used Figure 8 to validate the suspicious subsequences by comparing the attribute
values of the suspicious subsequences with those of their equivalent subsequences
from the first experiment datasets. These attributes are major causes of invalidity
in each suspicious subsequence. In this experiment, the threshold T is set at 0.03
based on our observations of the values of MSE in these datasets.

Figure 7a. A suspicious subsequence sJH was detected from JH in California data.
An equivalent subsequence sT was detected from T. The Confirmed attribute was
the major cause of invalidity in these subsequences. The data visualization plot in
Figure 7a shows how the Confirmed attribute values of the suspicious subsequence
from California data in JH (red points) deviate from other subsequences from
other states in the same source (i.e., JH). The constraint violations reported by
the decision trees for this suspicious subsequence were over the Minimum and Mean

features of the subsequence. In Figure 8a, MSE(sJH , sT ) < T , MSE(sJH , sNT ) <

T , and MSE(sT , sNT ) < T . This result indicates that in California, the numbers
of confirmed cases over time reported by all three data sources for this suspicious
subsequence are close to each other. Based on the case A, sJH , sNT , and sT are
either (i) abnormal but valid or (ii) anomalous data that have been obtained from
the same source.

Figure 7b. A suspicious subsequence sT was detected from T in New York data.
Equivalent subsequences sJH and sNT were also detected from JH and NT. The
Deaths attribute was the major cause of invalidity in these subsequences. The
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(a) Values of Confirmed Attribute for US States over Time from JH. The Red
Plot is a Suspicious Subsequence sJH corresponding to California Data

(b) Values of death Attribute for US States over Time from T. The Red Plot
is a Suspicious Subsequence sT corresponding to New York Data

(c) Values of cases Attribute for US States over Time from NT. The Red
Plot is a Suspicious Subsequence sNT corresponding to Florida Data

Fig. 7: Visualization Plots for Suspicious Subsequences Detetced from Datasets of
Experiment 1

data visualization plot in Figure 7b shows how the Deaths attribute values of
the suspicious subsequence from New York data in T (red points) deviate from
other subsequences from other states in the same source (i.e., T). The constraint
violations reported by the decision trees for this suspicious subsequence were over
the Linearity (i.e., strength of linearity, which is the sum of squared residuals of
time-series from a linear autoregression) and Burstiness (i.e., ratio between the
variance and the mean (Fano Factor) of time series) features of the subsequence.
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(a) A Suspicious Subsequence sJH

from JH in California Data

(b) A Suspicious Subsequence sT
from T in New York Data

(c) A Suspicious Subsequence sT
from NT in Florida Data

Fig. 8: Actual Attribute Values in Suspicious Subsequences Detetced from Datasets
of Experiment 1

In Figure 8b, MSE(sJH , sT ) > T , MSE(sNT , sT ) > T , and MSE(sJH , sNT ) < T .
This result indicates that the number of death cases in the New York state collected
by the data source T was considerably less than that of the other two sources of
data. Based on case B, sT is anomalous and sJH , sNT are valid.
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(a) Values of Hospitalization Rate Attribute for US States over Time from JH.
The Red Plot is a Suspicious Subsequence sJH corresponding to Kentucky Data

(b) Values of Hospitalization Rate Attribute for US States over Time from
T. The Red Plot is a Suspicious Subsequence sT corresponding to Ohio Data

(c) Values of Hospitalization Rate Attribute for US States over Time from
T. The Red Plot is a Suspicious Subsequence sT corresponding to Oregon
Data

Fig. 9: Actual Attribute Values in Suspicious Subsequences Detetced from Datasets
of Experiment 2

Figure 7c. A suspicious subsequence sNT was detected only from NT in Florida
data. The Confirmed attribute was the major cause of invalidity in this subse-
quence. The data visualization plot in Figure 7c shows how the Confirmed at-
tribute values of the suspicious subsequence from Florida data in NT (red points)
deviate from other subsequences from other states in the same source (i.e., NT).
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(a) A Suspicious Subsequence sJH

from JH in Kentucky Data

(b) A Suspicious Subsequence sT
from T in Ohio Data

(c) A Suspicious Subsequence sT
from T in Oregon Data

Fig. 10: Actual Attribute Values in Suspicious Subsequences Detetced from
Datasets of Experiment 2

The constraint violations reported by the decision trees for this suspicious sub-
sequence were over the Mean and Curvature (i.e., strength of curvature, which is
the amount by which a time series curve deviates from being a straight line and
calculated based on the coefficients of an orthogonal quadratic regression) fea-
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tures of the subsequence. In this figure, MSE(sJH , sT ) < T , MSE(sJH , sNT ) < T ,
and MSE(sT , sNT ) < T . This result indicates that in Florida, the numbers of
confirmed cases over time reported by all three data sources for this suspicious
subsequence are close to each other. Based on case A, sJH , sNT , sT are either valid
or anomalous collected from the same source.

Figure 9 shows data visualization plots for suspicious subsequences detetced by
IDEAL from datasets of the second experiment. We used Figure 10 to validate the
suspicious subsequences by observing the actual values of attributes for the suspi-
cious subsequences and their equivalent subsequences from the second experiment
datasets. These attributes are major causes of invalidity in each suspicious subse-
quence. In this experiment threshold T is set at 0.0004 based on our observations
on the values of MSE in these datasets.

Figure 9a. A suspicious subsequence sJH was detected only from JH in Ken-
tucky data. The Hospitalization Rate attribute was the major cause of invalidity
in this subsequence. The data visualization plot in Figure 9a shows how the Hos-

pitalization Rate attribute values of the suspicious subsequence (red points) from
Kentucky data in JH deviate from other subsequences from other states in the
same source (i.e., JH). The constraint violations reported by the decision trees
for this suspicious subsequence were over the Mean, Maximum, and Vchange (i.e.,
maximum difference in variance between consecutive blocks in time series) fea-
tures of the subsequence. In Figure 10a, MSE(sJH , sT ) > T . This result indicates
that the hospitalization rates reported by the two sources of data for the Ken-
tucky state were considerably distinct. Based on case D, sJH and sT are abnormal
subsequences that need more investigation.

Figure 9b. A suspicious subsequence sT was detected only from T in Ohio data.
The Hospitalization Rate attribute was the major cause of invalidity in this subse-
quence. The data visualization plot in Figure 9b shows how the Hospitalization Rate

attribute values of the suspicious subsequence from Ohio data in T (red points)
deviate from other subsequences from other states in the same source. The con-
straint violations reported by the decision trees for this suspicious subsequence
were over the Mean, Curvature (i.e., strength of curvature, which is the amount
by which a time series curve deviates from being a straight line and calculated
based on the coefficients of an orthogonal quadratic regression), and Highlowmu

(i.e., ratio between the means of data that is below and upper the global mean of
time series) features of the subsequence. In Figure 10b, MSE(sJH , sT ) > T . This
result indicates that the hospitalization rates reported by the two sources of data
for the Ohio state were considerably distinct. Based on case D, sJH and sT are
abnormal subsequences that need more investigation.
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Figure 9c. A suspicious subsequence sT was detected only from T in Oregon
data. The Hospitalization Rate attribute was the major cause of invalidity in this
subsequence. The data visualization plot in Figure 9c shows how the Hospitaliza-

tion Rate attribute values of the suspicious subsequence from Oregon data in T
(red points) deviate from other subsequences from other states in the same source.
The constraint violations reported by the decision trees for this suspicious subse-
quence were over the Variance and Burstiness (i.e., ratio between the variance and
the mean (Fano Factor) of time series) features of the subsequence. In Figure 10c,
MSE(sJH , sT ) > T . This result indicates that the hospitalization rates reported
by the two sources of data for the Oregon state were considerably distinct. Based
on case D, sJH and sT are abnormal subsequences that need more investigation.

6.2 Comparing suspicious subsequences from a homogeneous population

The data of the patients of a homogeneous population should relatively look sim-
ilar. We used this idea as a relative goal to evaluate the COVID-19 data in the
absence of a domain expert. For this purpose, we extracted data of four homoge-
neous populations from Anschutz medical data store (Table 3). These datasets are
results of joins of multiple tables (i.e., Patient, Diagnosis, and Lab) in the Anschutz
health data warehouse. We fed each population data as an input dataset to the
IDEAL tool to detect suspicious subsequences.

Table 3: Health Datasets

Dataset
ID

Dataset Name #Records #Attributes

1 COVID-positive with diabetes 770 103
2 COVID-positive females over 60 1174 103
3 COVID-positive with hypertension 1270 103
4 COVID-positive males over 60 1839 103

We validated the suspicious subsequences by visually observing the data vi-
sualization plots generated by IDEAL; we identified as actually abnormal (true
positive) those suspicious subsequences of patients whose attribute values chang-
ing pattern over time are considerably different (i.e., visually observable) from
other patients in their population. We identified as normal (false positive) those
suspicious subsequences of patients whose attribute values changing pattern over
time are not different (i.e., not visually observable) from other patients in their
population.

Figure 11 shows a visualization plot generated by IDEAL for a suspi-
cious subsequence detected by IDEAL from dataset ID=1. In this example, the
e Meancorpusc3 attribute is the major cause of suspiciousness of the subsequence.
We can visually observe that the suspicious subsequence represented by red data
points shows a considerable difference with other subsequences of the same popu-
lation (i.e., COVID-positive with diabetes). As a result, this subsequence is a true
positive. The constraint violations reported by the decision trees for this suspicious
subsequence were over the Mean and Variance features of the subsequence.
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Figure 12 shows a visualization plot generated by IDEAL for a suspicious
subsequence detected by IDEAL from dataset ID=3. In this example, the Phart

attribute is the major cause of suspiciousness of the subsequence. We cannot vi-
sually observe a considerable difference between the suspicious subsequence rep-
resented by red data points and other subsequences of the same population (i.e.,
COVID-positive with hypertension). As a result, this subsequence is a false pos-
itive. The constraint violations reported by the decision trees for this suspicious
subsequence were over the Maximum, Curvature (i.e., strength of curvature, which
is the amount by which a time series curve deviates from being a straight line and
calculated based on the coefficients of an orthogonal quadratic regression), and
Linearity (i.e., strength of linearity, which is the sum of squared residuals of time
series from a linear autoregression) features of the subsequence.

Table 4 shows number of true positives (TP ), number of false positives (FP ),
Precision = TP

(TP+FP ) and total time (TT ) it took to run the automated steps

of IDEAL against each dataset under test. As the data is unlabeled, we cannot
calculate the recall metric, which is based on the number of false negatives. The
number of true positives and false positives are calculated based on our observation
on the data visualization plots. It took between 58 to 108 seconds to run IDEAL
against the datasets. IDEAL could detect between 1 to 4 abnormal subsequences
in these datasets. The precision was between 75 to 100 percent.

Table 4: Results for Health Datasets

Dataset ID TP FP Precision TT (s)
1 4 1 0.80 58
2 3 1 0.75 76
3 2 0 1.00 64
4 1 0 1.00 108

7 Conclusions

We extended our previous data quality test approach to address the problem
of anomaly detection in data pertaining to COVID-19. We (1) proposed a two-
level reshaping technique for data preparation, (2) added a data visualization
plot for anomaly explanation, and (3) evaluated the approach against different
COVID-19 datasets in the domain knowledge absence. We ran two experiments to
validate the suspicious subsequences detected by IDEAL from Johns Hopkins, New
York Times, and COVID-19 tracking project. We compared the attribute values
of the suspicious subsequence detected from a source with those collected from
other sources of data. IDEAL could find an anomalous subsequence in COVID-19
Tracking dataset in the number of deaths in the New York state. IDEAL could find
three abnormal subsequences in the three sources, which need more investigation
by domain experts.

We also evaluated the anomaly detection effectiveness of IDEAL using four
health datasets from Anschutz medical campus. We compared a suspicious supse-
quence with other subsequences in a homogeneous population. IDEAL could detect
ten abnormal subsequences in these datasets.



Anomaly Detection in COVID-19 Time-Series Data 25

In the future, we will evaluate the approach using other types of COVID-
19 time series data. We plan to extend IDEAL to find anomalies in streaming
COVID-19 data.
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Appendices
A LSTM-Autoencoder

A Long Short Term Network (LSTM) [49] is a Recurrent Neural Network (RNN) [8] that
contains loops in its structure to allow information to persist and make network learn sequential
dependencies among data records [49]. An RNN can be represented as multiple copies of
a neural network, each passing a value to its successor. The original RNNs can only learn
short-term dependencies among data records by using the recurrent feedback connections [19].
LSTMs extend RNNs by using specialized gates and memory cells in their neuron structure
to learn long-term dependencies. The computational units (neurons) of an LSTM are called
memory cells. An LSTM has the ability to remove or add information to the memory cell state
by using gates. The gates are defined as weighted functions that govern information flow in
the memory cells. The gates are composed of a sigmoid layer and a point-wise operation to
optionally let information through. The sigmoid layer outputs a number between zero (to let
nothing through) and one (to let everything through). There are three types of gates, namely,
forget, input, and output.

– Forget gate: Decides what information to discard from the memory cell. Equation 3 shows
the mathematical representation of the forget gate.

ft = σ(Wf .[ht−1, xt] + bf ) (3)

where Wf is the connection weight between the inputs (ht−1 and xt) and the sigmoid
layer; bf is the bias term and σ is the sigmoid activation function. In this gate, ft = 1
means that completely keep the information and ft = 0 means that completely get rid of
the information.

– Input gate: Decides which values to be used from the network input to update the memory
state. Equation 4 shows the mathematical representation of the input gate.
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Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

where Ct is the new memory cell state and Ct−1 is the old cell state, which is multiplied

by ft to forget the information decided by the forget gate; C̃t is the new candidate value
for the memory state, which is scaled by it as how much the gate decides to update the
state value.

– Output gate: Decides what to output based on the input and the memory state. Equation 5
shows the mathematical representation of the output gate. This gate pushes the cell state
values between -1 and 1 by using a hyperbolic tangent function and multiplies it by the
output of its sigmoid layer to decide which parts of the input and the cell state to output.

ot = σ(Wo.[ht−1, xt] + bo)
ht = ot ∗ tanh(Ct)

(5)

An autoencoder is an unsupervised deep neural network that discovers constraints in the
unlabeled input data. An autoencoder is composed of an encoder and a decoder. The encoder
compresses the data from the input layer into a short representation, which is a non-linear
combination of the input elements. The decoder decompresses this representation into a new
representation that closely matches the original data. The network is trained to minimize the
reconstruction error (RE), which is the average squared distance between the original data
and its reconstruction [51].

An LSTM-Autoencoder [29] is an extension of an autoencoder for time-series data using
an encoder-decoder LSTM architecture. An LSTM-Autoencoder can capture the temporal de-
pendencies among the input records by using LSTM networks as the layers of the autoencoder
network.

Fig. 13: An LSTM-Autoencoder Network

Figure 13 shows the LSTM-Autoencoder architecture. The input and output are fixed-

size time series matrices. Xi,j = [x0i,j , ..., x
d−1
i,j ] is the jth record with d attributes, Ti is

the ith time series that contains w records, and w is the window size. The network output
has the same dimensionality as the network input. The network is composed of two hidden
layers that are LSTMs with d′ units. The first LSTM layer functions as an encoder that
investigates the dependencies from the input sequence and produces a complex hidden context
(i.e., d′ encoded time series features, where the value of d′ depends on the underlying encoding
used by the autoencoder). The second LSTM layer functions as a decoder that produces the
output sequence, based on the learned complex context and the previous output state. The
TimeDistributed layer is used to process the output from the LSTM hidden layer. This layer is
a dense (fully-connected) wrapper layer that makes the network return a sequence with shape
(d ∗ w). The reconstruction error for this network is defined as follows [51]:

RE =
1

m

m∑
i=1

(T ′i − Ti)
2 (6)

where Ti and T ′i are the ith network input and output and m is the total number of
subsequences.
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