
Iris: Amortized, Resource Efficient Visualizations of Voluminous
Spatiotemporal Datasets

Kevin Bruhwiler
Kevin.Bruhwiler@rams.colostate.edu

Colorado State University
Fort Collins, Colorado

Thilina Buddhika
thilinab@cs.colostate.edu
Colorado State University
Fort Collins, Colorado

Shrideep Pallickara
Shrideep.Pallickara@colostate.edu

Colorado State University
Fort Collins, Colorado

Sangmi Lee Pallickara
Sangmi.Pallickara@colostate.edu

Colorado State University
Fort Collins, Colorado

ABSTRACT
The growth in observational data volumes over the past decade
has occurred alongside a need to make sense of the phenomena
that underpin them. Visualization is a key component of the data
wrangling process that precedes the analyses that informs these
insights. The crux of this study is interactive visualizations of spa-
tiotemporal phenomena from voluminous datasets. Spatiotemporal
visualizations of voluminous datasets introduce challenges relating
to interactivity, overlaying multiple datasets and dynamic feature
selection, resource capacity constraints, and scaling. In this study
we describe our methodology to address these challenges. We rely
on a novel mix of algorithms and systems innovations working in
concert to ensure effective apportioning and amortization of work-
loads and enable interactivity during visualizations. In particular
our research prototype, Iris, leverages sketching algorithms, effec-
tive query predicate generation and evaluation, avoids performance
hotspots, harnesses coprocessors for hardware acceleration, and
convolutional neural network based encoders to render visualiza-
tions while preserving responsiveness and interactivity. We also
report on several empirical benchmarks that demonstrate the suit-
ability of our methodology to preserve interactivity while utilizing
resources effectively to scale.

CCS CONCEPTS
• Information systems → Spatiotemporal Data; • Human-
centered computing → Visualization; • Theory of computa-
tion → Sketching Algorithms; • Computing methodologies →
Neural networks.

KEYWORDS
Spatiotemporal Data; Visualization; Sketching Algorithms; Neural
Networks

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
BDCAT ’20, December 7–10, 2020, Leicester, UK
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1 INTRODUCTION
The proliferation of observational devices, improvements in the
resolution and frequency at which these measurements have been
made, and falling costs for data storage have all contributed to an
increase in data volumes. These data volumes hold the potential to
unlock insights via data analytics. A key intermediate step in the
data wrangling process that precedes the analyses is visualization.
Visualization allows scientists to quickly assess broad patterns in
the data.

This study focuses on spatiotemporal data where data is tagged
with spatial information representing the location being observed
and the timestamp reflecting when these measurements were made.
These spatiotemporal data represent a substantial portion of the
cumulative data volumes. Such data occurs in social media, observa-
tional and telemetry settings, transportation networks, simulations,
and commerce among others. Spatiotemporal visualization allows
us to identify spatial extents, temporal segments, or some combi-
nation thereof — also referred to as the spatiotemporal scope of
interest. Identifying such spatiotemporal scopes allows practition-
ers to target their modeling efforts more precisely.

To maximize interoperability across different platforms we use
the browser as the primary gateway for visualizations. Unlike tra-
ditional client-server interactions our visualizations entail interac-
tions with a server-side that encompasses a distributed collection of
machines. The distributed server-side is responsible for managing
requests from multiple, diverse clients concurrently.

1.1 Challenges
Enabling interactive visualizations of voluminous spatiotemporal
datasets involves several challenges that include:

• Interactivity: To be useful, visualizations must be inter-
active, allowing practitioners to maintain their chain-of-
thought and enabling visualizations to inform their explo-
rations. The visualizations must preserve this interactivity
during key explorative operations such as drill-down, roll-up,
and panning across spatiotemporal scopes.

• Selective Overlays: Often patterns are easier to visualize
when the analyses is supplemented by auxiliary datasets. In
particular, this involves allowing overlaying of features (also
referred to as independent variables) from diverse datasets.



• DataVolumes: Visualization involves amix of disk accesses,
network transfers, computation of visual artifacts, and mem-
ory residency. Data volumes exacerbate these aforemen-
tioned challenges by exceeding resource utilization thresh-
olds or capacities.

• Scale: Visualization systems must scale with increases in
the number of clients. This entails minimizing interactions
between the client and the server. Functionality must be
effectively apportioned so that the client-side takes on a
large portion of the load.

1.2 Research Questions
The broader research question that guides our investigations is the
following: How can we preserve interactivity when performing
spatiotemporal visualizations over voluminous datasets? Within
this broader context, we have identified key research questions that
we explore in this study.

• How canwe effectively harness available resources and amor-
tize workloads (CPU, memory, disk, and network I/O)? Ef-
fective amortization of workloads guides this investigation.

• How can we leverage learning during visualization? There
are two aspects to this. The first aspect involves predict-
ing spatiotemporal paths during visualization. The second
aspect involves leveraging deep learning to render the phe-
nomena, rather than computing the polygons comprising
the visualization.

• How can we leverage perceptual characteristics/limits of
visualization to improve the timeliness of rendering opera-
tions? This involves rendering coarser visual artifacts that
are then incrementally refined.

1.3 Methodology Summary
To ensure effective visualizations our methodology addresses chal-
lenges associated with data volumes. We leverage a novel mix of
algorithms and systems innovations working in concert to enable
effective apportioning and amortization of workloads to preserve
interactivity.

To cope with data volumes, we leverage the Synopsis sketch-
ing algorithm [1]. Synopsis is a single-pass sketching algorithm
which produces statistical sketches from the data. Once the sketch
is constructed it is the sketch and not the original data that is
consulted during visualization operations. The sketch is a space-
efficient data structure that serves as a surrogate for the voluminous
data that it sketches. In particular, the Synopsis algorithm extracts
information from the data and tracks distributional characteris-
tics of the data, summary statistics, and cross-feature covariances.
We have extended the basic Synopsis algorithm to facilitate effi-
ciency gains from a compaction perspective. The sketch is broken
up into a collection of space-efficient strands. Each strand encapsu-
lates information for a particular spatiotemporal scope. The strands
are amenable to aggregation and two strands can be combined to
produce a single strand for the larger spatiotemporal scope.

Queries underpin the effectiveness of visualization operations.
During visualization, Iris generates a series of queries. These higher-
level queries are converted to a series of well-formulated predicates

that benefit from pipelining, dispersion, and query plan optimiza-
tions on the server-side. In particular, the service query evaluation
framework is designed to preserve high throughput by leveraging
pipelining, reducing search space during distributed query evalua-
tions, and ensuring frugal memory footprints. Queries are evaluated
server-side and portions of the sketch that satisfy these queries are
returned back to the client. Results from the queries are processed
at the client side to compute visual artifacts that must be rendered.

The visualization is rendered using multiple, dynamic visual-
ization artifacts that collectively comprise the viewport. The visual-
ization is rendered as a Choropleth and represented as a collection of
polygons that collectively depict the phenomena. Choropleths ren-
der phenomena based on natural or administrative boundaries with
regions filled in using gradients determined by their feature radius.
Calculation of visual artifacts is performed on a per strand basis. In
particular, each strand within the sketch represents a spatial scope
with a distribution of values for different feature and correlations.
Each spatiotemporal scope is partitioned into a smaller set of poly-
gons. The number of polygons is dependent on the spatiotemporal
scope and the zoom level.

Polygons are used to render values for the particular spatial scope
that is currently visible on the map. The rendering process consults
the global gradient range that is established for a given feature. Dur-
ing visualizations, the Iris front-end identifies the spatiotemporal
scopes that have been impacted by a visualization change. Dur-
ing spatiotemporal roll-up operations the polygons are aggregated,
while during drill-down and panning operations the polygons are
recomputed.

Iris uses a proxy-based scheme that serves as a conduit for query
evaluations. Queries and responses are funneled back and forth
based on gRPC and Protocol Buffers to ensure performant, compact,
and low-latency communications between the client and server-
side. These interactions are agnostic of the language used at either
the client or server-side. For example, in our reference implementa-
tion our JavaScript based client interoperates with the Java based
server-side implementation. The server-side proxy is stateless and
is able to perform horizontal scaling maneuvers during large load
fluctuations.

Our server-side is designed to enable high query throughputs
while maintaining a lower query latency. Storage nodes are ar-
ranged as a distributed hash table (DHT) to provide better scalabil-
ity and fault-tolerance. Our data dispersion criterion ensures both
near-uniform distribution of data across the DHT while preserving
temporal locality, which reduces disk IO during query evaluation.
Data is indexed both spatially and temporally for faster lookups.
Further, we leverage multi-core architectures, disk caching, and fast
data serialization schemes effectively for efficient query processing.

Preserving responsiveness is a key requirement during visu-
alizations. Traditional batched visualizations are easy to implement
and reason about. However, batched visualizations have inefficien-
cies that stem from synchronization barriers that exist between each
phase (query, retrieval, and rendering) of the visualization. Batched
visualizations introduce lag because each phase cannot start before
the preceding one fully completes, contributing to prolonged wait
times. Furthermore, batched visualizations are computationally
expensive and require all data to be available before performing

2



computations. As a result, they suffer resource spikes that induce
failures.

In Iris, rather than retrieve results at all once, the results are
streamed from the server to the client. The rendering computations
are aligned with this streaming. In particular, the query retrievals
and rendering operations are continually interleaved, relieving
resource spikes. Furthermore, because our incremental rendering
operations amortize the workloads associated with rendering opera-
tions, responsiveness is preserved as well. This process is combined
with quantization (where we reduce the precision of features) when
computing the visual artifacts and rendering. These are incremen-
tally refined as additional data become available.

Leveraging deep learning for visualizations involves two key
steps: encoding and mapping. We use an encoder to first learn a
compact, lower-dimensional encoding of a given spatiotemporal
range that can then be used to create a visualization with high
fidelity. The second step involves a mapping phase where the en-
coded feature space is combined with a user query to produce the
visualization. This approach replaces piece-wise calculation of vi-
sual artifacts within an image with a series of matrix/tensor-based
operations that are highly amenable to acceleration on coproces-
sors at the client side. The computationally expensive operation
of training the encodings is performed on the server-side away
from the critical path of client interactions. Only trained models
are installed on the client side. Besides reduction in memory and
network overheads, another benefit of our methodology is that,
because geohashes are included as a feature vector, we are able to
reconcile spatial heterogeneity.

Our methodology makes effective use of resources at the
client side. In particular, we leverage GPU libraries both during
rendering operations and also during inferences performed by our
deep CNN (convolutional neural network) based encoder. Our sys-
tems benchmarks (in section 4.1) demonstrates the suitability of
our methodology to leverage hardware acceleration at the client
side.

1.4 Paper Contributions
Our methodology facilitates visualization of voluminous spatiotem-
poral datasets at scale. In particular, our contributions include:

(1) Effective distribution of visualization workloads to reduce
strain on the server side, minimize network communications,
and alleviate memory pressure.

(2) We leverage co-processors (GPU) to make effective use of
client-side capabilities both during calculation of visual arti-
facts and deep learning operations at the client side (infer-
ences) and server-side (model training).

(3) A query processing scheme that combines evaluation over
sketches with effective serialization and deserialization of
sketches aligned with the visualization schemes

(4) Effective amortization of workloads by combining streaming
of results with incremental refinement of the visualization to
balance responsiveness. Does not introduce hotspots because
the computations are amortized.

(5) A deep learning-based framework to generate visualizations
on the fly. Our methodology performs a novel mapping from

the feature space to the latent encoding space to produce
these visualizations.

2 RELATEDWORK
In previous work we looked at this problem primarily from a server-
side perspective. The Aperture[2] system did not scale because
visual artifacts were computed server-side. The server was also
required to maintain a large and complex state to enable caching
and predictive queries. This placed a lot of strain on the server
and inhibited efficient horizontal scaling. In Iris we address these
issues by using a simplified, stateless server and alleviating the
client’s computational load with data streaming, query predicate
optimization, deep learning, and co-processor utilization.

Creating visualizations with streaming data has been explored in
previous works with specialized techniques for time-series data[3],
creating visualizations in parallel with simulations[4], and using
kernel density estimation functions and GPU support[5]. Iris syn-
thesizes several of these ideas, including leveraging the horizontal
scalability of distributed computing clusters to maximize band-
width and using client GPUs to improve rendering times. Iris also
takes advantage of advances in computing technology, including
efficient serialization with protocol buffers[6] and browser-GPU
inter-operation with WebGL[7] and HTML canvas[8], to achieve
improved performance.

Several methods of incremental visualization generation are able
to provide visual analysis of datasets that are prohibitively slow
or expensive to visualize in full[9–13]. However, they still suffer
from one of the primary drawbacks of batched visualization: a cer-
tain amount of data must be retrieved before visualizations are
recomputed and rendered. In Iris, we present an efficient method
for incrementally refining visualizations as data points arrive, pre-
serving both interactivity and high-resolution.

Much research has been done into using deep neural networks
to generate images. Most notably including style transfer[14], vari-
ational autoencoders[15] (VAEs), pix2pix translation models[16],
and both deep convolutional and conditional generative adversarial
networks[17, 18] (DCGAN, CGAN). While these methods focus
on either converting between images or sampling them from a
pre-defined distribution, we replace the sampling distribution with
user-defined queries and re-purpose the convolutional nature of
these techniques to quickly generate geospatial visualizations.

Sketch-based storage of spatiotemporal data has been explored
before [1, 19, 20]. The Synopsis sketching algorithm has been used
previously to build a spatiotemporal data store. Its in-memory stor-
age model is in contrast to the on-disk storage model developed for
Iris. On-disk storage improves the scalability of the system due to
the capacity differential of physical memory and disk space avail-
able in commodity hardware clusters. On the other hand, Synopsis
benefits from in-memory data structures to support low latency
queries. Iris relies on various optimization techniques such as par-
allel disk IO, parallel query execution, and disk caches to counter
the IO speed differential between spinning disks and memory. Ag-
gregate RB trees (aRB trees) [19] are used to answer spatiotemporal
count queries. Iris stores spatial regions in R-trees as bounding rect-
angles. Each bounding rectangle points to a B-tree where historical
aggregates of the feature values are stored. Tao et al. [20] extends

3



Figure 1: The high-level architecture of our query model. Proxy servers are responsible for propagating a query to multiple storage nodes,
aggregating the response streams into a single stream, and sending the results back to the query client running on a browser. A small
Zookeeper cluster is used to identify newly added and failed nodes.

aRB trees with the FM sketching algorithm [21] to answer distinct
count queries. However, unlike Iris, these systems are designed to
work with a single feature stream and support only count based
queries.

NoSQL storage frameworks such as Galileo [22], MongoDB [23],
and Redis [24] have been used to store spatiotemporal data. Our
Sustain DHT forms the crux of our server-side data management
and stores sketches of the data rather than data/documents man-
aged by the aforementioned frameworks. Galileo and MongoDB
both leverage geohashes but are focused on block and document
storage respectively. Unlike Galileo, the (de)serialization schemes
in the Sustain DHT are language agnostic. Redis is an in-memory
storage system; our Sustain DHT manages the speed differential
of the memory hierarchy via selective residency of sketches and
indexes - as a result, memory footprints in the Sustain DHT are
significantly smaller.

3 METHODOLOGY
Iris was developed and evaluated using data from the NOAA North
AmericanMesoscale (NAM) forecast system [25], a large and geospa-
tially dense set of measurements, under the assumption that few
other geospatial datasets will be as difficult or computationally
taxing to visualize.

3.1 Strands
The design premise of the Synopsis sketching algorithm [1] is based
on representing individual feature values at a coarser-grained res-
olution while preserving inter-feature relationships in order to
reduce data size. This process is called discretization. Discretization
represents each feature value as a record using a bin based on a
predetermined bin configuration. A bin configuration comprises
a set of non-overlapping intervals that collectively construct the
range for a particular feature.

For instance, suppose the bin configuration for surface tem-
perature (in Kelvin) is [217.9, 256.7), [256.7, 285.8), [285.8,

Figure 2:An example of strand construction using Synopsis sketch-
ing algorithm. Spatio-temporal components and individual features
are represented in coarser-grained resolutions to reduce the stor-
age footprints. In this example, the subtree rooted at the vertex for
temporal component summarizes all the records occurring in an
area of 4.9 × 4.9𝑘𝑚2 represented by the geohash 9y8b9 for the 15
minute time interval starting at 13:00:00 on 05/01/2015.

305.2), [305.2, 334.3). If the surface temperature is 220.31 of
a particular record, then it falls within the range of the first bin,
[217.9, 256.7), therefore represented using the first bin. Similarly,

4



if the temperature slightly increases to 220.32 in the next record,
the updated feature value still gets mapped to the same bin.

In real settings, bin configurations are more dense — most bin
configurations contain around 30-50 bins. Bin configurations are
calculated using a kernel density estimation based method such that
the overall error due to discretization is maintained below a given
threshold. We use the normalized root mean square error (NRMSE)
of 2.5% as our error threshold for the benchmarks. Further, our
storage framework supports the evolution of bin configurations
over time to capture concept drifts (e.g., different bin configurations
for Winter and Summer seasons for a given region).

Spatial and temporal components of observation are also rep-
resented at coarser resolutions using geohashes. The geohash al-
gorithm [26] produces a deterministic mapping of 2-dimensional
spatial extents into a 1-dimensional string; the length of the geo-
hash string is inversely proportional to the size of the spatial extent
– the longer the geohash, the smaller the spatial extent that it rep-
resents. We use a prefix of the geohash to represent the spatial
component — this maps multiple observations that occur within
spatial proximity onto the same geohash prefix. Similarly, temporal
components are also mapped to coarser-grained time intervals.

The discretized records are then collated into a tree-like data
structure, as shown in Figure 2. Each tree path ending with a unique
leaf node is called a strand. Coarser-grained resolutions improve
the compaction of the dataset by mapping multiple records into
fewer strands. Records that occur within a particular spatial and
temporal proximity will be likely to be mapped into a single strand
after being discretized. At leaf nodes, a set of online statistics are
maintained to summarize all records that are represented using that
particular strand. We use Welford’s method [27] to maintain the
number of observations, the running mean, the sum of squares of
differences from the current mean, and the sum of cross products
between features. These statistics are useful for calculating descrip-
tive statistics as well as inter-feature relationships. We use strands
as the unit of data storage in our backend system.

3.2 Query Generation and Refinement
3.2.1 Spatial Predicates. The spatial predicates for each query are
determined by a geohash-based tree search. The smallest bounding
geohash is computed by taking the longest matching geohash of
the top-right and bottom-left corners of the visualization area. For
example, if the top-right geohash is "9zgvkpbsf" and the bottom-
left is "9zjs22e3h", the shortest matching prefix would be "9z". Sub-
geohashes are then searched recursively: the bounding box of each
geohash is compared to the bounding box of the visualization area
to determine if there is any overlap. If the boxes do overlap, that
geohash is added to the search set and the process continues down
to a predefined precision. Due to overheads in querying many
geohashes simultaneously the target precision is determined based
on the current zoom level of the visualization so that there will
never be too many geohashes in a single query.

3.2.2 Temporal Predicates. The temporal range of a query is de-
termined based on two factors: the frequency of the sketched data
and a user-selected time. All sketched data is bucketed into a con-
figurable temporal bracket (see Section 3.3). Each query specifies
a single temporal bracket, although querying multiple brackets is

possible. The bracket is determined via a Time-Dimension UI[28]
that allows users to query a specific time or play an animation
across a range of times by performing many sequential queries.

3.2.3 Speculative Query Generation. Iris implements a speculative
query methodology similar to Aperture’s[2] where some visualiza-
tions are pre-rendered. Speculative queries are performed on both
a temporal basis, in which future times are queried, and a spatial
basis, in which the user’s panning trajectory is linearly extrapolated.
Temporal extrapolation is done by simply incrementing the query
time by the temporal bracket, while spatial extrapolation is done
by examining the previous two visualization areas and querying
the next area in a straight line. However, unlike Aperture, Iris can-
not rely on the server to generate concurrent visualizations, and
simultaneously computing multiple visualizations reduces client
responsiveness (profiled in section 4.1). Consequently, speculative
queries are only performed while no other visualization is being
actively generated. Precomputed visualizations are stored in an
LRU cache on the client and rendered as needed.

3.3 Query Evaluation
Our storage subsystem is optimized for queries (read traffic). We
employ an array of optimizations such as uniform data dispersion,
data locality, indexing, parallel query execution, parallel disk I/O,
and caching for efficient data retrieval. Figure 1 depicts the high
level architecture of our query model.

We arrange the storage nodes as aDHTwith a consistent hashing-
based data dispersion scheme based on a key generated by com-
bining the spatial attribute and the temporal attribute of a strand.
DHTs provide better load balancing, incremental scalability, abil-
ity to work with heterogeneous commodity hardware, and fault
tolerance. We use the geohash of a strand combined with a coarser-
grained temporal component (e.g., the month of the year) to gener-
ate the key for data dispersion. Using a coarser-grained temporal
component, instead of the higher resolution timestamps, provides
better temporal locality during data storage. Consistent hashing on
a key generated by combining both spatial and temporal compo-
nents and the use of virtual nodes [29] enables better load balancing
across the DHT.

At each DHT node, strands are indexed both spatially and tem-
porally for efficient retrieval. Geohashes are indexed using a prefix
tree to support efficient wildcard matching. Leaf nodes of the prefix
tree are log structured merge (LSM) trees where strands are stored
in a sorted order based on their timestamps. Each LSM tree contains
a hierarchical temporal index to retrieve matching strands based on
temporal predicates of a query. We utilize multiple disks available
on a machine for storage to facilitate parallel disk I/O.

During query evaluation, a query is transformed into multiple
sub-queries by partitioning the spatial scope. These sub-queries are
then evaluated in parallel to leverage the multi-core architecture in
the underlying hardware. We also leverage disk caches by pinning
frequently accessed data in memory, a technique used in blob-store
implementations [30]. Memory limits are enforced on the storage
node processes such that the operating system can use sufficient
physical memory for the disk cache. Parallel query execution works
with caching and parallel disk I/O to reduce the query latencies
significantly.

5



3.4 Streaming Results
The cumulative network footprint of the strands matched with
a particular query can vary from a few Kilobytes to hundreds of
Gigabytes depending on the spatiotemporal scope collectively con-
structed by the predicates. Instead of returning all matching strands
at once, we stream matching strands to the client as soon as they
are retrieved by the worker threads.

Streaming results and handling them incrementally is benefi-
cial for visualizations because: (1) the visualization is updated im-
mediately after any user interaction, dramatically improving the
perceived responsiveness of the system, and (2) expensive computa-
tions required to render the visualization are amortized, minimizing
interference with other processes on the client machine and reduc-
ing the odds of the client suffering load-related failures. Further, a
streaming query model reduces the strain on the memory of the
server by shortening the memory retention period of the results,
therefore improving the overall query throughput of the system.

We designed our query API to be language agnostic by using
gRPC/Protocol Buffers — allowing clients implemented using nu-
merous supported programming languages to interact with our
storage system. We group multiple strands into a single message to
improve the network bandwidth utilization.

The query API is exposed through an array of proxy services act-
ing as the gateway to the storage system. Once a query is received,
the proxy server forwards it to the DHT, triggering a set of response
streams originating from individual DHT nodes. These streams are
then merged into a single stream at the proxy server and funneled
back to the client. Proxy nodes can often become bottlenecks due
to saturated resources such as network bandwidth and CPU. To
counter this issue, new proxies can be added on-demand without
disrupting the ongoing queries. The stateless runtime design of
proxy servers enables the seamless horizontal scaling of the proxy
array.

Data arrives at the client as a stream of Synopsis strands, serial-
ized as protocol buffers. The client is responsible for deserializing
them, converting the geohash location to a (latitude, longitude)
point, calculating the color of the associated polygon from the
deserialized features, and passing this information to the HTML
canvas. The client performs these operations on each data strand
asynchronously to allow it to cope dynamically with changes in
the rate of data arrival.

3.5 Rendering
Sketches are rendered on an HTML canvas in real-time as strands
arrive at the client, allowing users to visualize data points the
moment that they are available. The canvas element is a low level
model in HTML used for rendering bitmaps and 2D graphics. It can
optionally make use of WebGL which enables 3D rendering and
hardware acceleration via a GPU.

Due to the high rate of strand arrival it is critical that the can-
vas can render each strand quickly. Because canvas elements can
be updated incrementally, where only the modified region of the
canvas is recomputed rather than the entirety, it is well-suited to
rendering streamed data. Additionally, we ensure that the canvas
is not performing expensive anti-aliasing operations by rounding

the location of each polygon so that its bounds align evenly with
the canvas’ pixels.

On the canvas, each strand is represented as a square polygon
of a dynamic size, the color of which is determined by the strand’s
features. The size of each polygon is computed using one of sev-
eral decay algorithms (see Section 4.2): the first few polygons are
extremely large, taking up much of the visualization area, while
the size of later polygons is rapidly reduced down to a fixed min-
imum. This has the effect of immediately providing users with a
coarse-grained visualization that becomes increasingly refined as
more data arrives. The incremental rendering process is visualized
in Fig. 4.

3.6 Deep Neural Networks
We experiment with using deep convolutional networks to quickly
generate visualizations on the client. We explore the ways in which
this can improve the performance of Iris in three major respects:

(1) Reducing network traffic by eliminating the need to re-run
queries server-side when users change the spatial, temporal,
or feature predicates of the visualization within a predefined
temporal range.

(2) Improving the responsiveness of data visualizations by elim-
inating the need to wait for data to be streamed from the
server.

(3) Reducing computational load at the client by replacing CPU-
intensive deserialization operations with matrix multiplica-
tions highly amenable to co-processor acceleration.

We also investigate the uncertainty that comes fromusing generated
visualizations and the potentially deleterious effects on the final
resolution.

3.6.1 Training. The training dataset was created and curated by
generating high quality visualizations for a large number of user
queries, then saving the query and the visualization along with all
of the data strands for that particular temporal scope. This resulted
in a set of (input, target) pairs where the input consisted of both a
user query and all of the strands from the encompassing temporal
scope that could potentially be used to generate the associated
visualization. The strands are grouped into a matrix that preserves
the geospatial relations between the data points, allowing the use
of convolutional layers.

The network was trained in a distributed computing cluster us-
ing PyTorch[31], both to make use of additional cores and help
cope with the relatively slow process of reading and evaluating
the (input,target) pairs. The error was calculated by averaging the
binary cross-entropy loss[32] (BCE) between every pixel in the
generated image and the target visualization. Gradients were com-
puted to minimize the BCE loss and the weights of the network
were updated using the Adam[33] stochastic optimizer.

3.6.2 Network Structure. The network is structured as a typical
image-to-image translation model, using convolutional layers to
transform one image to another. The user query is encoded as an
additional channel and appended to the matrix of input strands.

Due to the limited types ofmatrix operations that can be executed
on the client (see section 3.6.3) the generator is required to have an
unusual structure. Rather than using the traditional up-sampling or

6



Figure 3: A comparison between query times with and without
GPU support. Using a GPU, Iris is able to render data at a faster
and more consistent rate.

deconvolutional layers to generate images common in GANs and
VAEs, we use a series of convolutional layers with a low number of
filters that do not change the size of the image. This allows us to
transform data into a generated rendering within the contraints of
web-based deep learning while still taking advantage of the spatial
nature of convolutions.

3.6.3 Mapping Phenomenon. To run the trained network on the
client-side we first convert the trained PyTorch model to Onnx[34],
a protocol buffer based machine learning model representation
format. We use Onnxjs, which has WebGL support, to execute
the model on the browser with co-processor support. Onnxjs was
chosen over Tensorflowjs[35] due to higher compatibility with
different libraries and improved speed during model evaluation[36].

4 EVALUATION
Experimental Setup: The evaluation was performed on a client
with 32GB of RAM, an Intel Core i5-9300H 2.40GHz CPU, and a
Nvidia 1660GTX GPU. Iris was accessed via a Chrome browser, and
GPU support was disabled during some experiments by disabling
WebGL canvas acceleration.

The data storage system comprised 75 nodes (Xeon E5-2620, 32
GB Memory, 4 TB storage) and a varying number of proxy servers
(Xeon E5-2620, 64 GB Memory) depending on the experiment, each
running Fedora 30 and JDK 1.8.0_251. Each machine is connected
to the cluster using a 1 Gbps link.

4.1 Responsiveness
Responsiveness in Iris is difficult to quantify due to the incremental
nature of the visualization construction. It is also difficult to com-
pare to other systems as there are few specialized geospatial data
visualization tools, none incremental. GeoSparkViz[37] is capable of
rendering geospatial scatter-plots and heat-maps at a rate of 20 mil-
lion points per minute, moderately faster than Iris, however doing
so requires the visualization to be generated server-side using all
the cores in a Spark cluster, restricting it to one user at a time, and
suffers from the overheads of submitting jobs and collecting results,
which make sub-second latencies impossible. Interactive geospatial
visualization systems, such as Aperture or Waldo[38], are capable
of rendering continent-scale visualizations in 5-7 seconds. Some

visualization systems, such as ISOS[39], achieve real-time interac-
tivity with sampling algorithms. As a heuristic for comparing Iris to
the different types of geospatial visualization tools, we define two
baselines: the sampling baseline, at one second, and the full-data
baseline, at five seconds.

As can be observed in Fig. 3, the first data points arrive a fraction
of a second after a query is issued. Although Fig. 4 shows that a visu-
alization is not completed immediately, the rapid feedback is likely
to improve user perception of the responsiveness of the system[40],
as is the visible and constant improvement as the visualization is
refined[41]. We can also see that, with co-processor support, Iris is
able to match the full-data baseline.

Fig. 3 also quantifies the difference between running Iris with
and without a GPU. The presence of a co-processor dramatically
improves the performance of Iris, reducing the time to complete a
visualization by more than 30%. Additionally, it stabilizes the rate
at which the visualization is incrementally rendered, likely because
the CPU faces contention from threads responsible for receiving
and deserializing data strands.

Finally, Iris implements a similar caching scheme to Aperture
in which speculative queries are made to pre-load data that a user
is likely to view in the future. However, Aperture did so by rely-
ing on the server to both concurrently render and cache specula-
tive queries, while Iris’ stateless server and client-side rendering
makes that impossible. Experimentation shows that rendering mul-
tiple visualizations simultaneously on the client (using an offscreen
canvas[8]) has a significant detrimental impact on client respon-
siveness, with each additional rendering causing a linear decrease
in performance (two simultaneous renderings take twice as long,
three take thrice as long, etc...) regardless of the number of streams.
As a result Iris only runs speculative queries one at a time, and
only when there is no rendering being actively performed. But,
unlike Aperture, Iris is capable of rendering high-quality visualiza-
tions with sub-second latency without the use of caching, making
speculative queries non-critical.

Processor Mean Evaluation Time (ms) Standard Deviation
CPU 2096.75 64.67

GPU 231.60 135.04

Table 1: Comparison in neural network evaluation times with and
without GPU support, averaged over 20 runs.

4.1.1 Responsiveness with Learned Visualizations. We also evaluate
the responsiveness of queries rendered using the pre-trained deep
neural network. The results of that evaluation are shown in Table
1. The presence of a GPU improves performance by nearly a factor
of ten, and, similarly to the incremental rendering operations, per-
forming the evaluation on a GPU reduces to competition between
simultaneous rendering and deserialization operations.

4.2 Fidelity
Iris is able to generate visualizations with sub-second latency due
to a decaying-size rendering scheme in which early data strands are
used to approximate the values of spatially adjacent data strands
until those strands arrive at the client. This results in a loss in

7



Figure 4: Three examples of increasing resolution over time. The
top row is without decay, the middle row uses linear decay, and
the bottom row uses exponential decay. Visualizations are shown
at 1/10th of a second after the query, 3/4ths of a second after the
query, and 4 seconds after the query.

visualization fidelity, as illustrated in Fig. 5. Both exponential and
linear decay schemes are never able to reach optimal fidelity due
to approximations made with early data strands. In Fig. 4 it can be
seen that the loss in fidelity occurs around the edges of the dataset
where data is scarce. In these regions certain strands are made to
approximate data that does not exist, creating some areas of the
visualization that will never be refined.

The response time gain, however, is enormous, with the expo-
nential decay scheme reaching its maximum fidelity in a quarter of
a second, easily under both the sampling and full-data baselines. As-
suming that the area being visualized is not too close to the spatial
edge of the dataset, the small loss in fidelity is visually insignificant
(see Fig. 4) compared to the improvement in response time.

4.2.1 Fidelity of Learned Visualizations. Fig. 5 also shows the qual-
ity of the pre-trained visualizations that are rendered as more data

Figure 5: A measurement of how image fidelity improves over
time with different methods. Comparisons are between the current
visualization and the final visualization generated without decay.

arrives. All the strands that have arrived so far are evaluated and a
learned visualization is generated every half-second, as the model
evaluation is too slow to be done every time a new strand arrives.
In Fig. 5, the generated raster shows moderately higher error than
any of the decay schemes, although it does outperform manual
rastering when just a few strands have arrived due to the fact that,
even with very little data, the model "knows" where data points are
located and the relative temperatures of varying regions.

4.3 Supporting low latency queries
We have designed our data storage system and the associated query
processing system to facilitate low latency and scalable query eval-
uation. We validate our design decisions outlined in Section 3.3
using a set of micro-benchmarks and system benchmarks.

Given that strands are disk-bound data, we leverage an array
of disks attached to a node to provide higher disk I/O (both reads
and writes). Figure 6 depicts the cumulative disk read throughput
achievable withmultiple disks attached to a single node. Near-linear
increase in the cumulative read throughput implies the minimal
overhead at the data access and query processing layer. In our
experimental setup, the network bandwidth is the most constrained
resource, which indirectly limits the disk read throughput.

Figure 7 and Figure 8 demonstrate the effect of parallelized query
processing and disk caching. At every DHT node, a query is split
into a series of subqueries based on the qualifying spatial scopes,
which are then processed in parallel. This approach is most effec-
tive with larger geospatial scopes — query completion times are
improved by 74.7% for geohash prefixes of length 0, whereas the im-
provement is 38.9% for geohash prefixes with length 4. On the other
hand, we observed a consistent improvement, 96.4% - 98.3%, due to
disk cache irrespective of the geohash prefix length, as shown in
Figure 8.

We profiled the query performance of our storage subsystem —
the results are depicted in Figure 9. Query completion times (laten-
cies) and the cumulative query throughput of the system is recorded
for a different number of concurrent queries. Each query retrieved
one month’s worth of data for an area represented by a geohash
prefix of length 4, therefore more uniformly distributing the queries
throughout the DHT. Our observations align with the behavior of
a typical distributed system approaching the peak performance.
Latency stays constant initially before increasing with the cumu-
lative query throughput. Once the query throughput reaches the

Figure 6: Disk read rates at a single node with multiple disks. Near
linear growth suggests a low overhead from the data access layer.

8



Figure 7: Impact of processing a query in parallel using multiple
workers. Parallel processing significantly reduces the latency of
queries with predicates corresponding to larger scopes.

Figure 8: Our query processing model extensively relies on disk
cache to reduce disk I/O. Using of caching reduces the query latency
irrespective of the query scope.

Figure 9: Query latency vs. throughput as we funnel multiple
queries simultaneously through a single proxy node. Once the proxy
nodes reach their maximum capacity, latency grows exponentially.

maximum capacity, the latency increases exponentially. Because
the data storage system is the only aspect of Iris shared between
users, all rendering is pushed to the client, this demonstrates that
our experimental setup can handle as many as 100 simultaneous
queries before reaching capacity. Because users are unlikely to be

Figure 10: Demonstrating the horizontal scalability of the proxy
server arrays. Incrementally adding proxy servers relieves the band-
width bottleneck, improving latency and throughput.

making queries every half-second, this translates to thousands or
tens of thousands of simultaneous clients.

Proxies act as the interface between the query clients and the
backend DHT, therefore they tend to become a bottleneck under
heavy load. More proxy servers are provisioned on-demand to
counter this issue. This behavior is demonstrated in Figure 10 — we
saturate the network bandwidth of a single proxy server using a set
of query clients operating simultaneously. As more proxy servers
join the array, the cumulative query output (measured in terms
of data transfer rate) is increased, while latencies are improved
significantly. We do not see a linear improvement of performance
because we keep the initial load unchanged, which is not sufficient
to saturate the network bandwidths of multiple proxy servers.

5 CONCLUSIONS AND FUTUREWORK
In this study we presented our methodology involving a mix of
workload amortizations, forecasts and learning, and exploiting per-
ceptual characteristics to render visual artifacts. In particular, Iris
facilitates interactivity at the client while allowing high-throughput
interactions at the server side.

RQ-1: Apportioning workloads across CPUs, GPUs, memory,
network, and disk I/O enables concurrent utilization of resources.
The framework leverages CPUs to perform keys aspects relating
to query evaluations such as search space reduction, traversal of
indexes, thread pool management and utilization of cores, and DHT
operations. Leveraging GPUs allow us to accelerate rendering of
visualizations and tensor operations triggered during model train-
ing and prediction. Our framework manages memory residency of
indexes and reduced disk I/O during retrieval operations. Frugal use
of network I/O via the use of Protocol Buffers for (de)serialization
of queries results in reduced footprints for network bandwidth.

RQ-2: Leveraging access patterns enables identification of visual
artifacts that can be precomputed. We also leverage patterns in the
data to train models that render visualizations. Training of our deep
learning models occur server-side away from the critical path of
renderings; only trained models reside, and inferences occur, at
the client side. Three characteristics ensure responsiveness; model
inferences (1) are underpinned by operations on tensors that are

9



highly amenable to GPU accelerations, (2) minimize client inter-
actions, and consequently network I/O, with the server-side, and
(3) since no serialization-related operations need to be performed,
there are no synchronization barriers between the CPU and GPU
allowing interactive renderings on the client-side.

RQ-3: Our rendering scheme includes a cooperative mechanism
involving the client and server side to combine fast coarser-grained
rendering with incremental refinements that improves the visu-
alization over time. This is underpinned by our server-side DHT
framework that partitions a query into multiple predicates that
are not just evaluated concurrently, but also support streaming of
results as they become available. Our methodology manages and
ensures a high degree of concurrency both in a distributed setting
and at a particular node. The degree of concurrency at a node can
be dynamically tuned based on the ongoing system load. Besides
reducing interference across queries to improve responsiveness,
this has the added benefit of high throughput evaluations.

As part of future work, we plan to experiment with generative
adversarial networks to explore its implications on the quality and
speed of rendering operations.

ACKNOWLEDGMENTS
This work was supported by grants from the U.S. National Science
Foundation [OAC-1931363, ACI-1553685], the Advanced Research
Projects Agency-Energy, and a Cochran Family Professorship.

REFERENCES
[1] Thilina Buddhika, Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pal-

lickara. Synopsis: A distributed sketch over voluminous spatiotemporal ob-
servational streams. IEEE Transactions on Knowledge and Data Engineering,
29(11):2552–2566, 2017.

[2] Kevin Bruhwiler and Shrideep Pallickara. Aperture: Fast visualizations over
spatiotemporal datasets. In Proceedings of the 12th IEEE/ACM International Con-
ference on Utility and Cloud Computing, UCC’19, page 31–40, New York, NY, USA,
2019. Association for Computing Machinery.

[3] Daniel A. Keim, Jörn Schneidewind, and Mike Sips. Circleview: A new approach
for visualizing time-related multidimensional data sets. In Proceedings of the
Working Conference on Advanced Visual Interfaces, AVI ’04, page 179–182, New
York, NY, USA, 2004. Association for Computing Machinery.

[4] J. Ahrens, K. Brislawn, K. Martin, B. Geveci, C. C. Law, and M. Papka. Large-scale
data visualization using parallel data streaming. IEEE Computer Graphics and
Applications, 21(4):34–41, 2001.

[5] O. Daae Lampe and H. Hauser. Interactive visualization of streaming data with
kernel density estimation. In 2011 IEEE Pacific Visualization Symposium, pages
171–178, 2011.

[6] K. Maeda. Performance evaluation of object serialization libraries in xml, json
and binary formats. In 2012 Second International Conference on Digital Information
and Communication Technology and it’s Applications (DICTAP), pages 177–182,
2012.

[7] Tony Parisi. WebGL: Up and Running. O’Reilly Media, Inc., 1st edition, 2012.
[8] Steve Fulton and Jeff Fulton. HTML5 canvas: native interactivity and animation

for the web. " O’Reilly Media, Inc.", 2013.
[9] Danyel Fisher, Igor Popov, Steven Drucker, and m.c. schraefel. Trust me, i’m

partially right: Incremental visualization lets analysts explore large datasets faster.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’12, page 1673–1682, New York, NY, USA, 2012. Association for Computing
Machinery.

[10] J. Im, F. G. Villegas, and M. J. McGuffin. Visreduce: Fast and responsive incre-
mental information visualization of large datasets. In 2013 IEEE International
Conference on Big Data, pages 25–32, 2013.

[11] Mike Barnett et al. Stat! an interactive analytics environment for big data. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’13, page 1013–1016, New York, NY, USA, 2013. Association for
Computing Machinery.

[12] Héléna A. Gaspar, Igor I. Baskin, Gilles Marcou, Dragos Horvath, and Alexandre
Varnek. Chemical data visualization and analysis with incremental generative

topographic mapping: Big data challenge. Journal of Chemical Information and
Modeling, 55(1):84–94, 2015. PMID: 25423612.

[13] Michael Glueck, Azam Khan, and Daniel J. Wigdor. Dive in! enabling progres-
sive loading for real-time navigation of data visualizations. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14, page
561–570, New York, NY, USA, 2014. Association for Computing Machinery.

[14] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer
using convolutional neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2414–2423, 2016.

[15] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew Stevens,
and Lawrence Carin. Variational autoencoder for deep learning of images, labels
and captions. In Advances in neural information processing systems, pages 2352–
2360, 2016.

[16] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image
translation with conditional adversarial networks, 2016.

[17] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[18] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, 2014.
[19] Dimitris Papadias, Yufei Tao, P Kanis, and Jun Zhang. Indexing spatio-temporal

data warehouses. In Proceedings 18th International Conference on Data Engineering,
pages 166–175. IEEE, 2002.

[20] Yufei Tao, G. Kollios, J. Considine, F. Li, and Dimitris Papadias. Spatio-temporal
aggregation using sketches. In Proc. of the Intl. Conference on Data Engineering,
pages 214–225, March 2004.

[21] Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data
base applications. Journal of computer and system sciences, 31(2):182–209, 1985.

[22] M. Malensek, S. L. Pallickara, and S. Pallickara. Galileo: A framework for dis-
tributed storage of high-throughput data streams. In 2011 Fourth IEEE Interna-
tional Conference on Utility and Cloud Computing, pages 17–24, 2011.

[23] Kristina Chodorow and Michael Dirolf. MongoDB: The Definitive Guide. O’Reilly
Media, Inc., 1st edition, 2010.

[24] Josiah L. Carlson. Redis in Action. Manning Publications Co., USA, 2013.
[25] National Oceanic and Atmospheric Administration. The North American

Mesoscale Forecast System, 2020.
[26] Gustavo Niemeyer. Geohash, 2008.
[27] BP Welford. Note on a method for calculating corrected sums of squares and

products. Technometrics, 4(3):419–420, 1962.
[28] Balearic Island Coastal Observing and Forecasting System.

Leaflet.TimeDimension. https://github.com/socib/Leaflet.TimeDimension,
April 2020.

[29] Giuseppe DeCandia et al. Dynamo: amazon’s highly available key-value store.
ACM SIGOPS operating systems review, 41(6):205–220, 2007.

[30] Shadi A. Noghabi et al. Ambry: Linkedin’s scalable geo-distributed object store.
In Proceedings of the 2016 International Conference on Management of Data, SIG-
MOD ’16, page 253–265, New York, NY, USA, 2016. Association for Computing
Machinery.

[31] Adam Paszke et al. Pytorch: An imperative style, high-performance deep learning
library. pages 8024–8035. Curran Associates, Inc., 2019.

[32] Andreas Buja, Werner Stuetzle, and Yi Shen. Loss functions for binary class
probability estimation and classification: Structure and applications. Working
draft, November, 3, 2005.

[33] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2014.

[34] Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network exchange.
https://github.com/onnx/onnx, 2019.

[35] Martín Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[36] Yulong Wang and Hariharan Sheshadre. Onnxjs.
https://github.com/microsoft/onnxjs, April 2020.

[37] Jia Yu, Zongsi Zhang, and Mohamed Sarwat. Geosparkviz: a scalable geospatial
data visualization framework in the apache spark ecosystem. In Proceedings of the
30th International Conference on Scientific and Statistical Database Management,
pages 1–12, 2018.

[38] D. A. Keim, C. Panse, M. Sips, and S. C. North. Visual data mining in large
geospatial point sets. IEEE Computer Graphics and Applications, 24(5):36–44,
2004.

[39] Tao Guo, Kaiyu Feng, Gao Cong, and Zhifeng Bao. Efficient selection of geospatial
data on maps for interactive and visualized exploration. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD ’18, page 567–582,
New York, NY, USA, 2018. Association for Computing Machinery.

[40] John A Hoxmeier and Chris Dicesare. System response time and user satisfac-
tion: An experimental study of browser-based applications. Proceedings of the
Association of Information Systems Americas Conference, 01 2000.

[41] Nicola Cranley, Philip Perry, and Liam Murphy. User perception of adapting
video quality. International Journal of Human-Computer Studies, 64(8):637–647,
2006.

10


	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Research Questions
	1.3 Methodology Summary
	1.4 Paper Contributions

	2 Related Work
	3 Methodology
	3.1 Strands
	3.2 Query Generation and Refinement
	3.3 Query Evaluation
	3.4 Streaming Results
	3.5 Rendering
	3.6 Deep Neural Networks

	4 Evaluation
	4.1 Responsiveness
	4.2 Fidelity
	4.3 Supporting low latency queries

	5 Conclusions and Future Work
	Acknowledgments
	References

