2019 IEEE International Conference on Big Data (Big Data)

An Interactive Data Quality Test Approach for
Constraint Discovery and Fault Detection

Hajar Homayouni, Sudipto Ghosh, Indrakshi Ray

Michael G Kahn

Department of Computer Science, Colorado State University Anschutz Medical Campus, University of Colorado Denver

{hhajar,ghosh,iray } @colostate.edu

Abstract—Data quality tests validate heterogeneous data to
detect violations of syntactic and semantic constraints. The spec-
ification of these constraints can be incomplete because domain
experts typically specify them in an ad hoc manner. Existing
automated test approaches can generate false alarms and do
not explain the constraint violations while reporting faulty data
records. In previous work, we proposed ADQuaTe, which is an
automated data quality test approach that uses an unsupervised
deep learning technique (1) to discover constraints from big
datasets that may have been missed by experts, and (2) to label
as suspicious those records that violate the constraints. These
records are grouped and explanations for constraint violations
are presented to domain experts who determine whether or not
the groups are actually faulty. This paper presents ADQuaTe2,
which extends ADQuaTe to use an interactive learning technique
that incorporates expert feedback to retrain the learning model
and improve the accuracy of constraint discovery and fault
detection. We evaluate the effectiveness of the approach on
real-world datasets from a health data warehouse and a plant
diagnosis database. We also use datasets with known faults from
the UCI repository to evaluate the improvement in the accuracy
of the approach after incorporating ground truth knowledge.

Index Terms—Big Data; Data quality tests; Explainable learn-
ing; Interactive learning; Unsupervised learning;

I. INTRODUCTION

Enterprises use databases, data warehouses, and big data
appliances to store, manage, and query data for making critical
decisions. Records get corrupted because of how data is
collected, transformed, and managed, and also because of ma-
licious activities. Inaccurate data leads to incorrect decisions.
Thus, rigorous data quality testing approaches are required to
ensure that the data is syntactically and semantically correct.

Syntactic constraint validation checks for the conformance
of an attribute with the structural specifications in a data
model. For example, in a health data store, patient_age must
take numeric values. Semantic constraint validation checks for
the conformance of the attribute values with the specifications
stated by domain experts. Semantic constraints can exist over
single attributes (e.g., patient_age >= 0) or multiple attributes
(e.g., pregnancy_status = true — patient_gender = female).

Data quality tests rely on the specification of constraints,
which are typically defined by domain experts but often in an
ad hoc manner based on their knowledge of the application do-
main and the needs of the stakeholders. Specifications can be
incomplete. For example, the constraint that restricts the values
for the day’s supply of a drug may be missing. Consequently,
a data record in a health data store may contain an incorrect
value for that drug. Incorrect values in attributes pertaining to

978-1-7281-0858-2/19/$31.00 ©2019 IEEE 200

michael kahn @cuanschutz.edu

medications can have disastrous consequences if the data is
used for patient treatment and in medical research [1].

Tools that automatically generate syntactic constraints ex-
ist, but they only check for trivial ones, such as the not-
null check [2]. Existing machine learning-based approaches
automatically discover non-trivial semantic constraints from
the data and report the faulty records as outliers [3]. How-
ever, these approaches do not explain which constraints are
violated by these records. Consequently, domain experts have
to examine a large number of outliers to decide whether or not
they are actually faulty and to determine the reason behind the
invalidity of the records.

In previous work we proposed a data quality test ap-
proach called ADQuaTe [4] that addressed the above is-
sues. ADQuaTe automatically discovers complex semantic
constraints from the data in a flat data model (i.e., a model that
consists of a single, two-dimensional array of data records),
marks records that violate the constraints as suspicious, and
explains the violations. ADQuaTe uses an unsupervised deep
learning technique called autoencoder [5] to discover the
constraints associated with the unlabeled records (i.e., records
whose validity is not known in advance). We used an au-
toencoder because its deep architecture can model constraints
involving both linear and non-linear relationships among data
attributes. Moreover, the unsupervised technique removes the
need for labels. Big datasets are usually not labeled and
even if labels were available, they would be based only on
the specified constraints. Unlike typical data quality testing
approaches that mark records as valid/invalid, the fault clas-
sification in ADQuaTe is non-binary; each record is assigned
a continuous suspiciousness score (s-score) between zero and
one. Records that do not conform to the discovered constraints
(i.e., records whose s-score is greater than a threshold) are
flagged as suspicious. To reduce the time needed to inspect
a large number of suspicious records, ADQuaTe uses a Self
Organizing Map (SOM) [6] clustering technique to identify
a small number of record groups such that the records in
each group are likely to violate the same constraints. The
contribution of each attribute to the overall suspiciousness
score of each group is calculated. Attributes with higher scores
in each group are used to generate a decision tree using an
explainable machine learning technique called Random Forest
classifier [7] to identify the constraints violated by that group.

Previously, we evaluated ADQuaTe on real-world applica-
tions and demonstrated that the approach can uncover previ-
ously detected as well as new faults in the data. However,

Constraint
Discovery

.m.

Preprocessed
Data Records

Fault
Detection

QSuw-clwi"“‘""l ? w‘,etm‘a.:'om‘

Fault

- ‘h— 1 interpretation

Groups of

Fig. 1: ADQuaTe2 Approach

ADQuaTe also incorrectly reported as suspicious a number
of valid data records and could not detect some previously
known faults. These false positives and negatives occurred
because ADQuaTe uses an unsupervised technique that has the
potential to learn incorrect constraints pertaining to the invalid
data. The resulting false alarms can make fault inspection
overwhelming for domain experts [8].

In this work, we extend ADQuaTe to minimize false alarms
through an interactive learning process [9]. The new approach,
ADQuaTe2, allows domain experts to inspect the suspicious
groups using a web-based interface and flag as faulty those
groups of records that are actually faulty. The feedback is
incorporated to label the training data records as faulty or
valid. The accuracy of constraint discovery is improved by
adding the record label as a new attribute to the training
dataset. We extend the autoencoder model by redefining the
error function [5] of the autoencoder network based on the
record labels. We also extend the autoencoder parameter ini-
tialization [10] for the retraining phase by using the parameter
values learned in the previous execution of the approach. We
redefine the s-score calculation based on the record labels. The
objective is to ensure that no valid records are reported as
suspicious in the retraining phase. Furthermore, the approach
tunes the threshold value to reduce false alarms over time.

We evaluated ADQuaTe2 using datasets from a health data
warehouse and a plant diagnosis database. We demonstrated
that our approach can discover new constraints that were
missed by domain experts and detect new faults in these
datasets. We also evaluated the improvements in the accuracy
of ADQuaTe2 using datasets with some ground truth data
(i.e., a set of known faults) from the UCI repository [11].
We demonstrated that the true positive rate increases and the
false negative rate decreases after incorporating the ground
truth knowledge and retraining the learning model.

II. PROPOSED APPROACH

Figure 1 shows an overview of the proposed approach. The
input is in the form of data records and the output consists of
a report showing groups of suspicious records accompanied
with an explanation of the violated constraints. There are five
components, namely, data preparation, constraint discovery,
fault detection, fault interpretation, and fault inspection. The
first four components were proposed in our earlier work [4]
and are briefly described in Sections II-A to II-D. Fault
inspection is a new component that we added to take feedback
from the domain expert and is described in Section II-E.
Sections II-F to II-H describe how the constraint discovery
and fault detection components are extended in ADQuaTe2.

201

A. Data Preparation

This component prepares the raw data by transforming it
into a form suitable for analysis. Typical machine learning
algorithms cannot be directly applied to certain data types,
such as categorical. Numeric datatypes can have different
ranges. The data attributes need to be preprocessed based on
their type and values. We used the one-hot encoding [12]
method for preprocessing the categorical attributes and the
standardization [13] method for the numeric attributes.

B. Constraint Discovery

This component obtains a trained model that best represents
the different types of constraints in the unlabeled data. We use
an unsupervised deep neural network called autoencoder [5]
that has been demonstrated to be effective for attribute repre-
sentation learning [14]. An autoencoder is composed of an
encoder and a decoder. The encoder compresses the data
from the input layer into a short representation, which is a
non-linear combination of the input elements. The decoder
decompresses this representation into a new representation that
closely matches the original data. The network is trained to
minimize the reconstruction error (RE), which is the normal-
ized average squared distance between the original data and its
reconstruction [5]. The constraints represented in the trained
model are in the form of complex equations that formulate the
associations among data attributes. However, these constraints
are not human-interpretable. Further steps are required to
explain the identified constraints to the domain experts.

C. Fault Detection

This component detects suspicious records that do not con-
form to the constraints represented by the trained model. Each
record is assigned a suspiciousness score (s-score), which is
equal to the reconstruction error of the record. Records whose
s-score is greater than a threshold are flagged as suspicious.

It may be too time-consuming for a domain expert to
inspect a large number of suspicious records. Thus, we group
the suspicious records based on their similarity into a small
number of groups. We use a clustering approach called Self
Organizing Map (SOM) [6], which preserves the relationships
among attributes [15] in its clusters. The outputs of this
component are groups of suspicious records. To inspect the
groups, a domain expert needs additional information about
the reason behind the invalidity of each group.

D. Fault Interpretation

This component helps a domain expert interpret each sus-
picious group by generating visualization plots of two types,

namely, s-score per attribute and decision tree. The trained
autoencoder model calculates the s-score per attribute. The
higher the value of s-score, the more likely is the attribute to
contribute to the invalidity of the group. For each group we
plot the s-score values for all the attributes in the group.

We use a decision tree [16] based technique called random
forest [7] classifier to determine the constraints that are vio-
lated by each group of suspicious records. In this decision tree
structure, the non-leaf nodes correspond to the attributes, the
edges correspond to the possible values of the attributes, and
every leaf node contains the label of the path described by the
attribute values from the root to that leaf node.

A domain expert decides whether or not a suspicious group
is actually faulty by analyzing the constraints represented in
the decision trees and by inspecting the values of the attributes
that are major contributors to the s-scores.

E. Fault Inspection

This component takes domain expert feedback through a
web-based user interface that uses check boxes for the expert
to flag as faulty the groups that are actually faulty. ADQuaTe2
labels the training data records using this feedback. The
labels are used by the extended constraint discovery and fault
detection components to improve the accuracy of the approach.

F. Update Training Dataset for Retraining

We add a new label attribute with four possible values (1:
faulty, 0.5: suspicious, 0: unknown, and -1: valid) to each
record in the input dataset. The label is initially O for every
record. The values of the label are updated based on expert
feedback. Records marked suspicious by the fault detection
component are labeled 0.5, out of which those marked as
actually faulty by the domain expert are labeled 1 and those
not marked by the domain expert are labeled -1. Records that
are not reported by ADQuaTe as suspicious remain 0. The
updated dataset is used to retrain the autoencoder.

G. Extension to Constraint Discovery

We extend this component by (1) redefining the reconstruc-
tion error of autoencoder based on the label value, and (2)
initializing the network parameters for the retraining phase.

1) Redefine reconstruction error based on label value: In
addition to the existing inputs (i.e., the attributes a;i ... a;q
for record z;), we also provide the new label ([;) to the
autoencoder. Unlike the other attributes, the labels are not
preprocessed. Figure 2 shows the new attribute and its cor-
responding output in the interactive autoencoder structure.

Autoencoder

- Jolo}
60O

Fig. 2: Interactive Autoencoder

202

The autoencoder is trained not only to minimize the differ-
ence between the record and its reconstruction (the original
reconstruction error), but also to minimize the difference be-
tween the record label and the label predicted by the network.

1 N d
DRI I
im1 =

where [; is the label of i*" record and I/ is the label predicted
by the network for this input, and NN is the number of records.

2) Initialize autoencoder parameters for retraining: The
original autoencoder uses randomly initialized network param-
eters, such as weights [10]. To improve the accuracy in each
retraining phase, we initialize the network parameters with the
values learned in the previous execution. The objective is to
ensure that the network does not lose any information from
the previous execution and the accuracy of the network is at
least as much as the accuracy of the previous trained network.
Figure 3 shows how the network weights are extracted and
restored for the retraining phase. After the network is trained
using the input dataset, the network parameters are extracted
and saved in an intermediate file. These parameters are re-
stored to initialize the autoencoder for the retraining phase.

:: I: Initial

Trained - - Autoencoder
Autoencoder _, for

Retraining

_J 1B

® B

ai;)*))

@Q“Q

Restore

Fig. 3: Initialize Autoencoder for Retraining

H. Extension to Fault Detection

We extend this component by (1) redefining s-score based
on the label values and (2) tuning the threshold value.

1) Redefine s-score based on record labels: As described
in Section II-C, the s-score of a data record is equal to the
reconstruction error of that record. ADQuaTe2 calculates the
s-score based the reconstruction error and the labels obtained
using domain expert feedback (equation 2). The objective is
to ensure that all the records detected in the retraining phase
are either faulty (i.e., records that were flagged by the expert
in previous executions) or unknown (i.e., records that have not
been reported by ADQuaTe?2 in previous executions).

= RE(z) + l(z) 2
where RE(z) is the reconstruction error of record x and
l(x) is the label assigned to record z after interacting with

the domain expert. Since RE(x) is normalized into the range
[0,1] and [(x) € {—1,0,0.5,1}, this new definition ensures

s_score(x)

that the s-scores of faulty, valid, and unknown records will
be in the range [1, 2], [-1, O], and [0, 1] respectively. By
setting the threshold to a value greater than zero, we ensure
that ADQuaTe2 will not report as suspicious any valid record
(i.e., records that ADQuaTE?2 flagged as suspicious in previous
executions but not flagged by the expert) in subsequent execu-
tions. Moreover, all the records marked as faulty by the domain
expert in previous executions will be reported as suspicious in
subsequent executions, but with a higher s-score value (in the
range [1,2]).

2) Tune threshold: The threshold value (7') is tuned to
reduce the false alarms over time. At the beginning of the
training phase, T is equal to the mean of s-scores of all the
input records. T is updated for the retraining phase.

Given the s-scores of unmarked (valid) records in the range
[a,p] and the s-scores of marked (faulty) records in the range
[c,d], as b < ¢, there is no overlap between the s-scores of
faulty and valid records. Equation 3 describes how ADQuaTe2
tunes T for the retraining phase to make sure that no valid
records are displayed as suspicious in the next iteration.

T {min(c, P) if P>0, 3)
min(e, p(s-scores,90)) otherwise
where P is the percentage of previously known faults for the
input dataset and p is the percentile function, which returns a
value below which a given percentage of records in the dataset
falls. Based on this equation, if there is a set of previously
known faults in the dataset, ADQuaTe2 detects at least P% of
records as suspicious to ensure that all the previously detected
faults are reported in the current iteration. We set the threshold
to 10% for datasets with no known faults because the average
percentage of known faults in the datasets used by this study
as well as 26 other datasets [17] from the UCI repository is
equal to 10%. Domain experts can change this value based on
the knowledge of the validity of their datasets.

III. EVALUATION

In our earlier work, we evaluated the constraint discovery,
fault detection, and fault interpretation effectiveness of our
approach using real-world data from health and plant domains.
We used seven datasets created using multiple table joins in
a health data warehouse [18] and one dataset from a plant
diagnosis database [19]. Rows 1 to 8 in Table I show the char-
acteristics of these datasets. We demonstrated that ADQuaTe
could detect between 96.14% and 100% of faults that were
previously detected by Achilles [20] and Murdock [21] tools
for the health datasets. In the worst case, ADQuaTe could
not detect 3.86% of faults that were previously detected by
the existing tools. This indicates that the autoencoder could
not discover all of the associations among the attributes.
ADQuaTe could detect between 33.33% to 35.63% actual
faults that were not previously detected. It took one hour for
the plant domain expert to inspect the 16 groups of 89 reported
records. It also took one hour for the health domain expert to
inspect 23 groups of 6848 reported records. Between 53.33%
to 100.00% of the visualization plots correctly explained the
reasons behind invalidity of the records.

203

In this paper, we evaluate the improvements in the accuracy
of the approach using datasets with ground truth data from
the UCI repository [11]. Rows 9 to 15 in Table I shows the
characteristics of these datasets. We also evaluate the time it
takes for the overall approach for all datasets.

A. Goal 1: Evaluate the accuracy improvements.

By answering the following questions, we demonstrated that
the fault detection effectiveness of ADQuaTe2 improves after
retraining the machine learning model.

RQI.a: Does the number of correctly detected faults increase
after retraining the machine learning model with the help of
feedback from domain expert?

Given E, the set of faulty records detected by an existing
data quality test approach, A the set of faulty records detected
by ADQuaTe2, and AF the set of faulty records that are flagged
by domain expert as actually faulty, we use the True Positive
Rate (TPR), Number of Runs (NR), and True Positive Growth
Rate (TPGR) to answer this question.

TPR: Percentage of actual faulty records that are correctly
identified as faulty.
|AF|

A “)

NR: Total number of times a domain expert revalidates data
until reaching the desired TPR.

TPGR: Percentage change of a TPR variable within the
interactive learning period.

TPR =

TPRNR
—_— 5
TPRy ©)

where T'PR; is the true positive rate at the first run and
TPRypR is the true positive rate at the last run.

)¥R — 1

TPGR = (

RQI1.b: Can the actual faults detected by ADQuaTe2 in the
previous runs still be detected after retraining the model?
To answer this question, we use the Fualse Negative Rate
(FNR) and False Negative Growth Rate (FNGR) metrics.
FPR: Percentage of undetected faults (UD) plus percentage
of actual faulty records detected in previous runs that could
not be detected in the current run.

|AFoq — AFpew]
|AFo4] ©)
where AF,;4 is the set of actual faults detected in previous
runs and AF,,.,, is the one detected in the current run.
FNGR: Percentage change of a FNR variable within the
interactive learning period.

FNR = + UD

1
FNRygr\NE
FNR1> -1 ™

where F'N R; is the false negative rate at the first run and
FNRyg is the false negative rate at the last run.

We used the UCI ML datasets with a set of previously
known faults. We implemented a script that automatically
executes ADQuaTe2 against an input dataset and detects
suspicious records. The script updates the values of the label
attribute from 0.5 to 1 for the suspicious records that are

FNGR = <

TABLE I: Datasets from Real-world Applications and UCI ML Repository [11]

Known Faulty

ID | Name Domain #Records | #Attributes Records (%)
1 | Plant_diagnosis Plant 313 18 0.00
2 | Measurement JOIN Person Health 94,165 4 0.02
3 | Drug_exposure JOIN Concept Health 100,000 20 5.65
4 | Measurement JOIN Concept Health 100,000 19 4.81
5 Visit_occurrence JOIN Concept Health 100,000 9 0.00
6 | Drug_exposure JOIN Observation_period JOIN Concept Health 600,000 7 18.33
7 | Procedure_occurrence JOIN Observation_period JOIN Concept | Health 600,000 5 41.00
8 | Observation JOIN Observation_period JOIN Concept Health 1,000,000 7 0.07
9 | Lymphography Oncology 148 18 4.05

10 | Glass_identification Criminology 214 10 4.20
1T Vertebral_column Biomedical 240 6 12.50
12 | Heart_disease Health 267 75 20.60
13 | Ecoli Biology 336 8 2.67
14 | Ionosphere Radar 351 34 35.89
15 | Breast_cancer Oncology 699 10 34.50

actually faulty (i.e., within the previously known faults) and
from 0.5 to -1 for the ones that are valid. Next, the script
retrains the constraint discovery model and reruns the fault
detection component (Section II-E) and measures the accuracy
of ADQuaTe2 based on the metrics described in this section.
The whole process is performed 10 times.

PR

Run
Lymphography —Glass —Vertebral Heart —Ecoli —lonosghare — Breast_cances

tymphography —Glass

Fig. 4: Improvement in TPR and FNR for UCI Datasets

Figure 4 shows how the true positive rate increases and false
negative rate decreases over time during the retraining process
for the datasets under test. Table II shows positive values
for TPGR for all of these datasets, which demonstrates that
the fault detection effectiveness of ADQuaTe2 improves after
retraining the machine learning model. Table II shows negative
values for FNGR for all of these datasets, which demonstrates
that the fault detection effectiveness of ADQuaTe2 improves
after retraining the machine learning model.

after eight iterations. This shows that the payoff is not worth
the cost of running ADQuaTe2 after eight iterations. This
number was applicable to the UCI datasets that we used but
cannot be generalized to other datasets. Domain experts can
change the number of iterations based on their observation on
the improvement of the accuracy for their datasets.

B. Goal 2: Evaluate the performance of overall approach.

We demonstrated that ADQuaTe2 is performance efficient
in constraint discovery and fault detection by answering the
following question.

RQ2: How long does it take to execute ADQuaTe2 against an
input dataset?

TT: The total time taken to perform the automated steps of
data preparation, constraint discovery, fault detection, and fault
interpretation. Time spent by domain experts is not included
because different experts inspect faults in different ways.

Table III shows values of 7T for all the datasets under test
for one execution of ADQuaTe2. The datasets in this table
are sorted based on their size = N Re * N At, where NRe is
the number of records and NAr is the number of attributes. It
took between 0.138 to 21 minutes to execute the automated
steps of ADQuaTe2 for these datasets. As the results show,
TT is not necessarily greater for the datasets with larger size.
This shows that dataset characteristics other than size, such as
data types and sparseness may have also affected the results.
The analysis of other effective factors on the performance of
ADQuaTe?2 is the subject of our future work.

TABLE III: Total Time (TT) for All Datasets

TABLE II: True Positive and False Negative Growth Rate for

UCI Datasets for 10 Runs

Dataset ID | TPGR | FNGR
9 0.127 -0.16

10 0.21 -0.17

11 0.13 -0.16

12 0.48 -0.27

13 0.22 -0.12

4 0.038 -0.26

15 0.01 -0.20

Based on Figure 4, the TPR and FNR are

almost stabilized

204

Dataset ID Size | TT (min)
11 1,440 0.146
10 2,140 0.138

9 2,664 0.160
13 2,688 0.160
1 5,634 3.000
15 6,990 0.210
14 11.934 0.333
12 20,025 0.208
2 376,660 15.000
5 900,000 5.000
47171,900,000 20.000
3 | 2,000,000 21.000
7 | 3,000,000 7.000
6 | 4,200,000 6.000
8 | 7,000,000 8.000

IV. RELATED WORK

Data management systems provide syntactic constraint vio-
lation detection at the schema design level. Association Rule
Mining [22] investigates semantic constraints from data using
association rules that describe co-occurrence of attribute val-
ues. However, this is an inefficient approach as it makes one
pass through the dataset for every combination of attribute
values. Moreover, too many different association rules can
be derived from even a tiny dataset, most of which are non-
interesting to domain experts [23].

Machine learning-based approaches can detect the out-
liers [3] that violate semantic constraints in the data. Depend-
ing on the availability of labeled data, these techniques are
classified as supervised (e.g., Naive Bayesian [24], Support
Vector Machine (SVM) [25], and Artificial Neural Network
(ANN) [26]), unsupervised (e.g., OC-SVM [27]), and semi-
supervised (e.g., clustering and Representational Learning
(RL) [8]). Supervised techniques require domain experts to
manually label training data, which is not scalable for big
datasets. The training phase is restricted to a set of labeled
data that are biased towards the domain expert’s knowledge.
The Naive Bayesian approach assumes a strong independence
between the record attributes and cannot discover constraints
that involve relationships among multiple attributes. SVM
trains a hyperplane in the attribute space that best divides
a labeled dataset into valid/invalid classes but the trained
hyperplane is an equation over data attributes that is not
human interpretable. ANN trains a network of information
processing units that best classifies the records as valid/invalid
but the network is not human interpretable. Semi-supervised
techniques require providing a clean dataset for the training
phase. These techniques are also biased towards the definition
of valid records by the experts. The hyperplane trained by an
OC-SVM captures regions where the probability density of
the valid data lives, but is not human interpretable. Distance-
based clustering algorithms cannot derive relationships among
attributes in their clusters [28]. Moreover, the clusters do not
explain what constraints were violated. The representations
used in Representational Learning also do not explain how the
records violate constraints and the representations themselves
are not human interpretable.

V. CONCLUSIONS

We extended our previous approach by incorporating the
expert feedback to minimize the false alarms and generate
more precise results. ADQuaTe2 allows experts to inspect
the reported records and feeds the constraint discovery and
fault detection components with the information received from
the expert. Our approach discovered new constraints in the
attributes of health and plant data that were missed by domain
experts and detected faults that were not previously detected
by the existing tools. The true positive and false negative rates
improved after incorporating the ground truth knowledge and
retraining the learning model. We will extend ADQuaTe2 to
support constraint discovery over multiple records using time
series analysis techniques.

205

ACKNOWLEDGMENT

This research was supported by grants from the Anschutz
Medical Campus at University of Colorado Denver. It was
also supported in part by the US National Science Foundation
(OAC-1931363, CNS-1650573, and CNS-1822118) together
with funding from AFRL, Cable Labs, Furuno Electric Com-
pany, and SecureNok.

REFERENCES
[1] “Patient Safety Errors are Common with Electronic
Health Record Use,” https://healthitanalytics.com/news/

patient-safety-errors-are-common- with-electronic-health-record-use
(Accessed 2019-08-17).

[2] “Informatica,” https://www.informatica.com/ (Accessed 2019-02-12).

[3] C. C. Aggarwal, “An introduction to outlier analysis,” in Qutlier Anal-
ysis, 2017, pp. 1-34.

[4] H. Homayouni, S. Ghosh, and I. Ray, “ADQuaTe: An Automated Data
Quality Test Approach for Constraint Discovery and Fault Detection,”
in 20th IEEE IRI, 2019, pp. 61-68.

[5] C. Zhou and R. C. Paffenroth, “Anomaly Detection with Robust Deep
Autoencoders,” in 23rd ACM KDD, 2017, pp. 665-674.

[6] T. Kohonen, “The Self-Organizing Map,” Proceedings of the IEEE,

vol. 78, no. 9, pp. 1464-1480, 1990.

B. Kaminski, M. Jakubczyk, and P. Szufel, “A Framework for Sensitivity

Analysis of Decision Trees,” CEJOR, vol. 26, no. 1, pp. 135-159, 2018.

[8] B. N. Saha, N. Ray, and H. Zhang, “Snake Validation: A PCA-based
Outlier Detection Method,” IEEE SPL, vol. 16, no. 6, pp. 549-552, 2009.

[9]1 R. M. Konijn and W. Kowalczyk, “An Interactive Approach to Outlier

Detection,” in 5th RSKT, 2010, vol. 6401, pp. 379-385.

C. M. Bishop and P. o. N. C. C. M. Bishop, Neural Networks for Pattern

Recognition. Clarendon Press, 1995.

“UCI ML Repository,” https://archive.ics.uci.edu/ml/index.php (Ac-

cessed 2019-05-14).

W. Zhang, T. Du, and J. Wang, “Deep Learning over Multi-field

Categorical Data,” in ECIR, 2016, pp. 45-57.

“Scaling,” https://scikit-learn.org/stable/modules/preprocessing.html

(Accessed 2019-03-23).

G. Zhong, L.-N. Wang, X. Ling, and J. Dong, “An Overview on Data

Representation Learning: From Traditional Feature Learning to Recent

Deep Learning,” JFDS, vol. 2, no. 4, pp. 265-278, 2016.

V. Cherkassky and F. M. Mulier, Learning from Data: Concepts, Theory,

and Methods, 2nd ed. Wiley-IEEE Press.

P. B. de Laat, “Algorithmic Decision-Making based on Machine Learn-

ing from Big Data: Can Transparency Restore Accountability,” Philos-

ophy & Technology, vol. 31, no. 4, pp. 525-541, 2018.

“Outlier Detection Datasets,” http://odds.cs.stonybrook.edu/ (Accessed

2019-08-17).

“HDC,” http://www.ucdenver.edu/about/departments/healthdatacompass/

(Accessed 2019-02-12).

“CSU Plant Diagnostic Clinic,” https://plantclinic.agsci.colostate.edu/

(Accessed 2019-03-26).

“Achilles,” https://github.com/OHDSI/Achilles (Accessed 2019-02-12).

“Murdock,” https://murdock-study.com/ (Accessed 2019-06-24).

R. Agrawal, T. Imielifiski, and A. Swami, “Mining Association Rules

Between Sets of Items in Large Databases,” SIGMOD Rec., vol. 22,

no. 2, pp. 207-216, 1993.

I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, “Chapter 3 - output:

Knowledge representation,” in Data Mining, 2017, pp. 67-89.

P. Lam, L. Wang, H. Y. T. Ngan, N. H. C. Yung, and A. G. O. Yeh.

(2017) Outlier Detection in Large-Scale Traffic Data by Naive Bayes

Method and Gaussian Mixture Model Method.

C. Cortes and V. Vapnik, “Support-vector Networks,” ML, vol. 20, no. 3,

pp. 273-297, 1995.

C.-F. Tsai, Y.-E. Hsu, C.-Y. Lin, and W.-Y. Lin, “Intrusion Detection

by Machine Learning: A Review,” ESWA, vol. 36, no. 10, pp. 11994~

12000, 2009.

S. Agrawal and J. Agrawal, “Survey on Anomaly Detection using Data

Mining Techniques,” PROCS, vol. 60, pp. 708-713, 2015.

G. Gan, C. Ma, and J. Wu, Data Clustering: Theory, Algorithms, and

Applications. SIAM, 2007.

[7

—

[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]
(18]
[19]
[20]

21
[22]

[23]

[24]

[25]

[26]

[27]

[28]

