
Rapid, Progressive Sub-Graph Explorations for Interactive
Visual Analytics over Large-Scale Graph Datasets

Sam Armstrong
∗

Sam.Armstrong@rams.colostate.edu

Colorado State University

Fort Collins, Colorado

Kevin Bruhwiler
∗

Kevin.Bruhwiler@rams.colostate.edu

Colorado State University

Fort Collins, Colorado

Sangmi Lee Pallickara

Sangmi.Pallickara@colostate.edu

Colorado State University

Fort Collins, Colorado

ABSTRACT
Exploring a voluminous graph dataset visually is a challenging task

due to the sheer amount of data and the lack of structure to rely

on during the navigation. Indra, our framework for large-scale

graph data, provides responsive visual analytics over large-scale

graph datasets. In this study, we propose a novel graph indexing

scheme that pivots the view of the graph to a hierarchical structure

while preserving the semantic importance of vertices within the

user’s analysis scenario. Indra allows users to compare and track

multiple aspects of sub-graphs by supporting linked multi-views

and multi-resolution operations such as drill-in and roll-ups. We

have performed a set of empirical benchmarks profiling Indra and

these demonstrate that several operations are executed with sub-

second latency to effectively support interactive visual analytics.

CCS CONCEPTS
• Information systems→ Summarization; •Human-centered
computing → Visual analytics; • Software and its engineer-
ing → Client-server architectures; • Networks → Network topol-

ogy types.

KEYWORDS
Visual Analytics; Indra; Large Graph; Network Analysis; Graph

Indexing; Graph Summarization

ACM Reference Format:
Sam Armstrong, Kevin Bruhwiler, and Sangmi Lee Pallickara. 2019. Rapid,

Progressive Sub-Graph Explorations for Interactive Visual Analytics over

Large-Scale Graph Datasets. In Proceedings of the IEEE/ACM 6th International
Conference on Big Data Computing, Applications and Technologies (BDCAT
’19), December 2–5, 2019, Auckland, New Zealand. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3365109.3368793

1 INTRODUCTION
The scale of graphs capturing real-world phenomena has grown

dramatically. As of 2018, Facebook has 2.38 billion active users with

an average 338 friends per account [1]. Similarly, there are more

than 335million Twitter users and 500million tweets were sent daily

in 2014 [2]. Effective visualization is critical to explore the dynamic

∗
Both authors contributed equally to this research.

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of the United States

government. As such, the Government retains a nonexclusive, royalty-free right to

publish or reproduce this article, or to allow others to do so, for Government purposes

only.

BDCAT ’19, December 2–5, 2019, Auckland, New Zealand
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7016-5/19/12. . . $15.00

https://doi.org/10.1145/3365109.3368793

and flexible graph data. However, the sheer number of objects

that must be rendered far exceeds the physical memory limits;

furthermore, flexibly defined interconnectivity included in a graph

exacerbates the complexity of depicting them in a 2-dimensional

graphical space.

There have been active research on summarizing graph struc-

ture to reduce data volumes, speedup graph mining, and provide

visual analytics while preserving semantics of the original data.

This includes approaches using clustering and classification [3–

6], community detection [7–10], pattern set mining [11, 12], and

visualization [13, 14]. However, applying graph summarization

techniques to interactive visual analytics poses a unique set of chal-

lenges. First, most of the summarizing algorithms target volume

reduction while preserving the key characteristics of the original

dataset - often, this involves prioritizing vertices and edges to store.

This process often results in loss of details that may be critical to

discovering insights. Second, a user’s interest in a large dataset is

hard to capture at the beginning of data exploration. Interactive

analytics frequently involves a series of actions to maneuver users’

interests such as drill-in, roll-up, zooming, or panning. Applying a

single data reduction algorithm (tuned to a particular usage) may

limit the capability of data exploration.

We have designed and developed Indra, an infrastructure for

large-scale graph visual analytics. In this paper, we propose a hierar-

chical indexing scheme for large graph datasets that is well-aligned

with characteristics of the visual analytics applications such as a

high-level pattern recognition and a progressive exploration. In-

dra provides interactive visualization features such as multi-linked

views, OLAP style explorations (e.g. drill-down/roll-up/panning),

and sub-graph analysis capability.

1.1 Research Questions
As part of this study, we explore the following research questions:

RQ-1: How can we provide an effective overview of a large graph?

Views of a massive graph structure should capture an accu-

rate and comprehensive summary at a given level to facilitate

subsequent explorations.

RQ-2: How canwe retrieve the details of sub-graphs as user’s visual

analytics progresses? The sub-graph visualized at each level

must provide enough details so that users can understand

characteristics and discover patterns in the current view.

RQ-3: How can the system process flexible queries to support real

time interaction? Each exploration will involve 100s of data

queries over the voluminous graph data. The back-end must

provide a scalable and high-throughput query evaluation

capability.

https://doi.org/10.1145/3365109.3368793
https://doi.org/10.1145/3365109.3368793

RQ-4: Finally, how can the application compose different views of

graph data and provide a comprehensive analytics environ-

ment?

1.2 Overview of Approach
In this study, we describe our hierarchical, sub-graph indexing

scheme and comprehensive visual analytics features for a large-

scale graph dataset. We have designed an algorithm to navigate

sub-graph structures using dynamic hierarchical indexing schemes.

First, to discover users’ initial interests or support a coarse-grained

pattern recognition, we index the graph to identify a set of the

most representative nodes and edges. Since there may be multiple

analytical aspects to the same dataset, Indra allows users to select

different indexing scheme algorithms for their analysis. The result

of initial indexing forms the highest level of graph overview in

Indra. Based on the highly representative subset, Indra performs

sub-graph indexing as an off-line computation.

Data exploration features supported in OLAP (Online analyt-

ical processing) are widely adopted among the visual analytics

tools. This includes support for features such as dicing, drill-down,

roll-up, or panning. Data retrieval queries should be well-aligned

with the aforementioned features to reduce query evaluation la-

tency and avoid excessive memory consumption in the visualization

application. Unlike other datasets such as geospatial or temporal

datasets, defining resolutions of data representation in a graph

is not straightforward. In our paper, we define the highest level

(the coarsest resolution) as the set of the most representative ver-

tices and their edges. We assume that traversing from one of the

most representative vertices to any other vertex increases the level

of resolution. The level of resolution in Indra is defined as the

shortest distance from a selected subset of the most representative

vertices. Our hierarchical indexing scheme, called the viewpoint
path, encapsulates the traversal path from the representative vertex

to their reachable vertices. Instead of performing a graph traversal

algorithm to generate each view, we directly retrieve the sub-graph

information using our pre-calculated index.

Using Indra’s hierarchical sub-graph query, we designed and

developed a comprehensive graph analytics application to support

multi-linked views, hierarchical sub-graph exploration, and real-

time drill-down/roll-up/panning features.

1.3 Paper Contributions
Our methodology allows real-time data retrievals of large-scale

graph datasets. Our novel graph indexing scheme enables effective

summarization and progressive navigation within analytics applica-

tions such as interactive visualizations. Our specific contributions

include:

(1) A graph indexing scheme that preserves potential path of

graph exploration across different resolution levels.

(2) A data indexing scheme that reduces the management over-

head and dynamic updates of the graph data via a scalable,

offline job orchestrated in a distributed computing environ-

ment.

(3) A high-throughput visual graph query evaluation that scales

across applications that require graph visualization and ana-

lytics.

(4) Highly integrated graph visualization features that provide

a comprehensive view of the graph and sub-graphs in real-

time.

1.4 Paper Organization
The remainder of this paper is organized as follows. Section 2 dis-

cusses related work in graph summarization algorithms and visual

analytics. Section 3 describes the methodology used in Indra. The

system architecture and visual analytics capabilities are described

in Section 4. Experimental setups, performance benchmarks, and

analysis of results are outlined in Section 5. Finally, our conclusions

and future research directions are described in Section 6.

2 RELATEDWORK
2.1 Graph Summarization
Any graph summarization algorithm can be generally categorized

into one of two different approaches: importance summarization or

similarity summarization. Importance summarization algorithms

identify a subset of nodes and/or edges as important and create a

summarized graph consisting exclusively of that subset. Similarity

summarization algorithms attempt to discover nodes with similari-

ties, in their topology or their attributes, and either combine them

or discard them as redundant. In both algorithms the result is a

graph consisting of a much smaller number of nodes that can be

visually analyzed.

2.2 Importance Summarization Algorithms
Determining the importance of nodes in a graph is highly depen-

dent on the graph in question, however there are a number of

algorithms based on the graph’s topology that can be reasonably

applied to most datasets. Shortest-path based[15–18] summarization

are common and applicable to many real-world datasets, includ-

ing social media and collaboration networks. They rank nodes by

their location in the network. There are two major variations on

shortest-path based summarization: nodes are ranked either by

their distance from some predetermined important node or by the

number of shortest paths which the node lies on. Degree based[15]
summarization, on the other hand, ranks the importance of a node

by its degree under the assumption that the most connected nodes

are the most important.

2.3 Similarity Summarization Algorithms
Like importance, there aremany different ways of determining node

similarity based on attributes, such as by real-world geographic

location, node category, or edge types. However, there are a few

universally applicable methods based on the graph’s topology. The

most popular of these is redundancy elimination[15, 19] (sometimes

called structural equivalence[20]) which classifies two nodes as sim-

ilar if they share a certain fraction of neighbors, the assumption

being that those two nodes fulfill the same role in the network.

A similar topological similarity summarization is clique elimina-
tion[15, 21, 22], which identifies cliques (sub-graphs in which every

node connects to every other node) in the graph and merges them

into a single node. Additionally, some techniques, such as CON-
DENSE[23], take an information theoretic approach and attempt to

eliminate nodes that do not belong to a unique structure[24].

2.4 Hierarchical Summarization Algorithms
Few attempts have been made at a hierarchical visualization of

large graphs. The SNAP[25] and k-SNAP[25] graph summariza-

tion operators are one such attempt which allow the creation of

graph summaries based on user defined attributes and even support

drill-down and roll-up interactions. However, unlike Indra, they

don’t support panning sub-graphs and are limited to storing and

processing graphs on a single machine. Many hierarchical summa-

rization algorithms, such as the Slice Tree[26] algorithm, perform

hierarchical summarization on graph attributes with the intention

of enabling easy storage and fast database-esque queries[27, 28].

However, such algorithms often discard information related directly

to nodes and edges and consequently are not suitable for graph

visualization.

2.5 Graph Analysis
Domain-specific techniques have been developed for sub-setting[29,

30]. Graph network analyses have been used in to visualize super-

spreaders and disease dynamics[31]. This work targets domain in-

dependent approaches to sub-setting and visualizing large graphs.

Mitra et al [32] explore server-side caching and dynamic manage-

ment of rendering resolutions over spatiotemporal phenomena. We

view our work to be synergistic with efforts that leverage caching

for rendering phenomena.

2.6 Graph Visualization
There exist a number of tools of visualizing graphs and networks.

However, due to the enormous variety of datasets, objects, and

concepts that can be abstracted as a graph, it may be impossible

to create a single tool that can handle every use-case. Here we

examine some of the most popular graph visualization tools and

their specific use-cases.

2.6.1 GraphViz. GraphViz[33] is a popular, open-source graph vi-

sualization tool with scriptingAPI’s formany popular programming

languages like Java and Python. It supports a number of different

layouts, including spring-model layouts, and contains tools for basic

visual interactivity. GraphViz’s DOT format is accepted by a number

of graph-related tools, including Gephi and NetworkX[34], making

it a standard tool for graph visualization. However, unlike Indra,

GraphViz does not support drill-down/roll-up operations and lacks

sophisticated tools for visually navigating sub-graphs, making it

unsuitable for viewing large, hierarchically indexed graphs.

2.6.2 Gephi. Gephi[35], like GraphViz, is an open-source tool for

graph visualization, however it places a much greater emphasis on

graph manipulation and exploration. It provides an exceptional user

interface (UI) which allows users to highlight, hide, and organize

graph visualizations. It also comes with a suite of graph analysis

tools (average path length, clustering coefficient, etc) which are eas-

ily accessible to non-programmers. Consequently, Gephi is flexible

and powerful enough to provide support for most graph visualiza-

tion use-cases. However, Gephi runs on a single machine and does

not provide tools for topology summarization. This limits the size of

the graphs Gephi can visualize to what a single machine can handle

and results in poor performance when visualizing exceptionally

large graphs.

2.6.3 Cytoscape. Cytoscape[36] is a similar tool to Gephi which

specializes in visualizing biological networks. Unlike Gephi, Cy-

toscape has a JavaScript library which provides interactive tools

for graph visualization and analysis in a web browser. It provides

a large variety of different graph layouts and support for use on

mobile devices. However, like GraphViz, it lacks support for drill-

down/roll-up operations, the ability to navigate across sub-graphs,

and the ability to scale horizontally to multiple machines.

3 METHODOLOGY
OLAP style analytics allow users to explore the data with vary-

ing resolution and progressive coverage. To retrieve sub-graphs

effectively, Indra provides a hierarchical sub-graph retrieval query

using the viewpoint path indexing scheme.

3.1 Hierarchical Sub-Graph Retrieval Query
(RQ1)

The resolution of the data representation is often defined differently

based on the context. In Indra, we define the resolution of graph

data representation as the distance from the most representative

sub-graph. Consider a graph G = (V, E), where V is the set of vertices

and E is the set of edges. We define a sub-graph GR as the most

representative sub-graph of G and it contains the most important

vertices (super-nodes) in the graph G. Section 3.2.1 explains how

Indra defines the importance of nodes and computes GR. The sub-

graph GR provides the highest level overview of the graph G with

the lowest resolution of the data representation.

To explore less important vertices and edges, users can issue a

hierarchical sub-graph retrieval query with 2 main input parame-

ters: the vantage vertex (v) in GR, and the desired level of resolution

(r). The vantage vertex is the vertex that is closely related to the

user’s interest. The output of this query, Gquery is a subset of G and

it includes all vertices that are reachable from v with distance r.
As a Gquery shares greater r, the resolution of the given sub-graph

has a higher resolution based on the vantage vertex, v. In Indra,

r is measured as the number of hops from the sub-graph to the

representative node v. The cost r is extensible with the weights or

other metrics.

3.2 Viewpoint Path: Hierarchical Graph
Indexing Scheme (RQ2, RQ3)

Understanding a voluminous graph is challenging because of the

excessive amount of unstructured data and its complexity. Narrow-

ing down the scope of the graph to a manageable size is critical

to performing timely analyses. However, existing summarization

techniques result in unavoidable information loss of meaningful

nodes and edges. To circumvent this, we have designed a hybrid

scheme that combines summarization with a reachability-oriented

graph indexing scheme - the viewpoint path. Our approach reduces

the memory footprint in the visualization application by means of

aligning the query output with the user’s visual analytics activities.

As depicted in Figure 1, the original graph G is segmented into a

sub-graph of super-nodes (GR) and a set of sub-graphs comprising

a super-node and its reachable nodes (GS={GS1, GS2, GS3, ...}, where

GS1,GS2,GS3 ... are subsets of G). This pivots the view of the graph G
to a fractal style hierarchical structure with the topmost level view

of super-nodes and downstream their sub-graphs. Based on the

algorithm selecting the super-nodes, some vertices and their associ-

ated edges may be ignored if they are not reachable from any of the

super-nodes. A non-super-node may belong to multiple sub-graphs

if there are multiple reachable super-nodes. A user can specify one

of these super-nodes and then descend to view a sub-graph that

represents only a portion of the original graph. This allows users

to both drill-down to a specific location of interest and roll-up to

view an arbitrarily large portion of the graph without triggering

excessive network communications or entailing significant memory

consumption.

Figure 1: An illustration of sub-graphs contained within super-

nodes. In Indra each node in the sub-graphs is also a super-node

containing its own sub-graph.

3.2.1 Initial Graph Summarization. To generate an initial represen-

tative sub-graph with super-nodes (GR), Indra relies on existing

topology summarization algorithms. Since the importance of a node

is subjective based on the angles of the analysis, Indra allows users

to select/examine the initial indexing scheme algorithm.

Indra supports the initial indexing scheme algorithms listed be-

low. We have evaluated the overall performance of these algorithms

in section 5.

3.2.2 Degree-Indexing. The Degree-Indexing (DI) algorithm [15]

is an importance-based graph indexing algorithm. First, DI assigns

importance of each vertex based on the degree or other vertex

values based on the context of analysis (e.g. the shortest path from

the vertex to another chosen vertex, the number of shortest paths

which pass through the vertex, or some other attribute of the vertex).

Then, a set of nodes with the highest importance values are selected.

Since DI captures the importance of each vertex, it is applicable for

social network type graph analyses.

3.2.3 KeepAll. LikeDI, the KeepAll Algorithm [15] is an importance-

based graph indexing algorithm. KeepAll identifies a subset of key

vertices; the shortest paths between the subset of key vertices are

calculated and all the nodes which lie on them are labeled as im-

portant. We used the degree of a vertex as the importance metric

for KeepAll and DI. In contrast to DI, KeepAll preserves the closely

connected vertices (to the initial important vertices) as well. Ob-

viously, KeepAll requires additional computations to perform the

shortest path algorithm.

3.2.4 Jaccard-Indexing. The Jaccard-Indexing (JI) algorithm [20] fo-

cuses on structural equivalence. It classifies the network nodes into

categories by their positions in the network. Because JI preserves

the context and topology details, it is a suitable to understanding

flow patterns (e.g. traffic analysis). First, the neighboring vertices

for each node are collected and stored as a set of vertex IDs. Then,

the Jaccard Similarity (1) between the set at each vertex and its

immediate neighbors is computed and summed.

Jaccard(X ,Y) = |X ∩ Y |/|X ∪ Y | (1)

By summing the Jaccard Similarity, nodes with a high number of

similarly structured neighboring nodeswill be assigned a high value.

Finally, N nodes with the highest values are labeled as important.

Intuitively, nodes that make many of their neighbors redundant are

preserved in the indexing scheme.

3.2.5 Generating Viewpoint Path Index. Once the initial important

subset (GR), is determined, Indra computes viewpoint paths, which

provides a uniquely identified location of each node in any given

sub-graph. Elements of the array are the IDs of nodes related to

the path from a super-node of the sub-graph to the current node.

The length of the viewpoint path is configurable; this limits the

number of layers one can drill-down into a graph before reaching

the viewpoint path bottom-level.

Listing 1 and 2 shows pseudo code of the iterative computation

of the hierarchical indexing scheme. When updating the viewpoint

path for each node, it should be noted that the final element in the

adjacent node’s sub-array will be the adjacent node’s ID. As a result,

each node takes the partial viewpoint path from its most valuable

neighbor and propagates that neighbor’s ID to the end, assigning

itself to that neighbors’ super-node at the current level of view-

point path. It also takes that neighbor’s importance as its own. The

constant C in line 7 defines the threshold at which a node switches

super-nodes. If the difference between a node’s current super-node

importance and its neighboring super-node’s importance is greater

than C, it will make the switch. In the case of a binary importance

value, such as in figure 2, C has no effect.

Listing 1: The Hierarchical Indexing Scheme Algorithm

1: level = 0
2: recent_update = True
3: while recent_update do
4: recent_update = False
5: for node in nodes
6: for adj_node in adjacent_nodes(node)
7: if adj_node.value > node.value + C
8: node.update(adj_node , level)
9: recent_update = True
10: level = max(level++, max_level)

Listing 2: The Viewpoint Path Update Function

1: Function update(adj_node , level):
2: this.viewpoint_path [0: level] =

adj_node.viewpoint_path [0: level]
3: this.value = adj_node.value

Figure 2: A simple illustration of the hierarchical indexing scheme

algorithm. Node attributes consist of an ID, an importance value,

and a viewpoint path.

Figure 2 depicts a simple example of the indexing scheme with

the viewpoint path length of 3. Note that the viewpoint path for

each node is initialized with the node’s ID. To complete indexing, 3

iterative computations must be performed. In iteration 3, no node

is updated and the algorithm terminates and each viewpoint path

contains the id (1) from the super-node.

For a graph with n vertices and a viewpoint path length of m,

the iterative indexing scheme entails a computational complexity

of O(mn), which is computationally intensive especially for large

graphs. To address this issue, Indra leverages Apache Spark [37]

and its Pregel [38] APIs, which provides a massively parallel data

processing environment and selectively performs computation on

nodes only if updates are needed. We have observed that using

these frameworks with our optimizations considerably reduced the

run time (benchmarks included in section 5).

4 SYSTEM ARCHITECTURE AND
CAPABILITIES

As illustrated in figure 3, Indra consists of a client application

and a back-end server running on a commodity machine cluster.

The client application tracks the user’s location, provides opera-

tions to navigate the graph, and translates user’s actions into data

retrieval queries. The back-end server performs graph indexing

using the viewpoint path algorithm and evaluates user’s queries.

The server and client communicate using an HTTP connection.

The key requirement of this architecture is to provide sub-second

latencies that facilitates real-time interactivity during explorations

over voluminous graph datasets.

4.1 Client Application
Indra’s client is a web-based application that consists of roll-up

controls (at the top), graph layout (in the middle), and distribution

displays (at the bottom). Roll-up controls enable the user to step up

either one level in the hierarchical graph path or jump directly to

the top of the hierarchy. The graph layout shows the current sub-

graph and an abstraction of all adjoining sub-graphs. It also displays

the ID of the sub-graph near the top of the GUI. The distribution

displays provide some metadata about the current sub-graph and

support user interactivity. A snapshot of Indra’s visual interface

is provided in figure 4.

4.1.1 Rendering Views. The client application leverages D3.js [39]

to render the graph and results of the built-in analytics features.

D3.js is a widely used open-source JavaScript library for data visu-

alization. The graph layout in the center of the GUI consists of two

nested force-directed graphs (often referred to as spring-model lay-

outs). Spring-model layouts achieve a well-distributed uniform view

of a graph via a mechanical simulation in which edges pull nodes to-

gether while nodes repel each other. The simulation is run until an

equilibrium, a state in which no nodes are changing their location,

is reached. Spring-model layouts do not require specific knowl-

edge of graph theory and often result in graphs with near-uniform

edge length, even node distribution, and semi-symmetrical layouts

Figure 3: An illustration of Indra’s system architecture. The

Apache Spark cluster creates and caches an indexed graph using

data from an HDFS cluster. The client sends queries to an HTTP

server residing in the driver node of the Spark cluster, which gen-

erates results from the cached graph.

[40]. In Indra, the abstracted adjoining sub-graphs are displayed

as a force-directed graph with the current sub-graph displayed as

another force-directed graph within the central node of the abstrac-

tion. Indra utilizes D3.js to create the distribution displays that

provide real-time interactivity during the data rendering.

4.2 Server
Indra’s server consists of an Apache Spark cluster and a HTTP

server. Spark is the key computing component for generating a

hierarchical index of the graph using viewpoint paths. The HTTP

server resides on the driver node of the Spark cluster and coordi-

nates the cluster’s activities and collects data from the cluster in

response to queries sent by client applications.

4.2.1 Distributed Computing Environments. Low latency is key

for interactive analytics that chains steps of analytics and user’s

cognitive understanding [41]. Interactive exploration of a large

dataset, or simply reading the data, often takes minutes or hours.

Tomitigate this issue and provide sub-second response times, Indra

employs a distributed Apache Spark [37] cluster.

Apache Spark is an open-source, distributed data-processing

engine that uses clusters of machines to partition the data across the

main memory of multiple machines and orchestrate data processing

in parallel. In our implementation, Spark reads data from a Hadoop

Figure 4: An example of Indra’s visual interface. The current sub-

graph is shown in the center, with pie-charts providing metadata

about the sub-graph at the bottom. Controls for rolling-up are

provided at the top of the interface. The sub-graphs that can be

panned to are represented as larger nodes surrounding the sub-

graph.

Distributed File System (HDFS)[42] cluster, which is a distributed

file system designed for large datasets with fault-tolerance.

We leverage Spark’s existing library, GraphX [43], that is de-

signed for performing graph computations over large-scale graphs.

To perform our graph indexing scheme (described in section 3.2),

Indra used the implementation of Dijkstra’s shortest-path algo-

rithm supported by GraphX. To compute viewpoint path indexing,

we have leveraged the Pregel [38] implementation included in the

GraphX library. We have observed that the Bulk Synchronous Par-

allel model of Pregel was well-aligned with our iterative computing

requirements. The benchmarks of the computing using Spark and

its libraries are included in section 5.

4.2.2 Performing the Viewpoint Path Algorithm (RQ1, RQ2). Indra
indexes the graphs in two stages: initial indexing scheme and cal-

culating the viewpoint path. In the initial indexing scheme stage,

the user-defined indexing scheme algorithm is applied to the graph.

The result of this indexing scheme must comprise a subset of the

initial graph’s nodes and an importance value associated with each

(GR). This step is computed off-line.

To calculate the viewpoint path for each node, Indra takes the

desired length of the path, the original graph, and the indexed graph

(GR) as inputs and generates a viewpoint path for each vertex. The

results are cached in memory to provide rapid query evaluation.

4.2.3 Sub-GraphQuery Evaluation (RQ3). Indra’s sub-graph query
allows the client application to retrieve a subset of vertices and

edges that share the same distance from the vantage vertex. The

user’s actions such as drill-down or roll-up are translated to a sub-

graph query by the client application. As described in Section 3,

Indra specifies the sub-graph with the most representative vertices

as the highest-level overview (level-0 resolution). The current view

of a sub-graph (at the resolution level of n) displays a set of vertices

with their viewpoint path containing the same sequence of indices

from the 0
th
to the (n-1)

th
elements. For the actions exploring an

immediately higher resolution (e.g. drill-down), the server will

return a set of vertices with the viewpoint path containing the

identical sequence of the 0
th
to n

th
elements, where the n

th
element

is the vertex ID of the current vantage vertex. Indra evaluates this

query over the memory resident viewpoint paths computed off-line.

All edges associated to the selected vertices are included in the

query output.

4.3 Interactive Visualization Features (RQ4)
Indra provides several interactive features that are designed to en-

able easy exploration of large graphs, including linked-view meta-

data about the sub-graph currently being viewed, the ability to

drill-down to a specific sub-sub-graph or roll-up to the current

super-graph, and the ability, unique to Indra, to see and traverse

across adjoining sub-graphs.

4.3.1 Multi-Linked Views. Multi-linked views describe a system

in which multiple visual displays are used to show a variety of

information about a single object or system. The displays are also

linked, such that a modification to one automatically triggers an

equivalent modification in another. In Indra, we display both a

visualization of the graph and a series of pie-charts providing addi-

tional information about the nodes displayed. The views are bound

to each other by a visualization technique, brushing and linking;

highlighting or selecting any portion of the pie-charts will highlight

the corresponding nodes in the graph visualization and update the

distributions shown in the pie-charts. Conversely, changing the sub-

graph being visualized will update the pie-charts with information

about the new sub-graph.

4.3.2 Sub-Graph Analysis. Indra provides pie-charts illustrating

the distribution of node degrees, of interior nodes (the nodes within

each super-node), and of interior edges (the edges com- pressed

within each super-node) within the current sub-graph. As depicted

in Figure 4, mousing-over a section of a pie-chart will highlight all

the nodes that fall within that section with the corresponding color.

Note that the other distribution displays have also been updated to

match the highlighted portion. Clicking on the section will keep

the nodes highlighted even after mousing-off. Multiple sections

of multiple pie-charts can be selected simultaneously with nodes

being highlighted in a ring-nested fashion. This allows users to

quickly identify all the super-nodes which meet a certain set of

criteria i.e. all super-nodes which have a degree of five and contain

30 interior edges.

4.3.3 Drill-Down and Roll-Up. Indra allows users to drill-down

and roll-up through visualizations. These operations are best de-

scribed as changing the horizontal scope of the visualization. Drilling-

down narrows the scope to sub-graphs comprising fewer total

nodes, while rolling-up broadens the scope to sub-graphs com-

prising more total nodes. They are comparable to zooming-in and

zooming-out, however while zooming merely magnifies or mini-

mizes a portion of the visualization, drill-downs and roll-ups actu-

ally change the information being displayed. In Indra this entails

showing a different sub-graph at a different level of resolution.

4.3.4 Navigating Sub-Graphs. When navigating graphs that cannot

be viewed in their entirety it is essential that a user always has a

clear idea of the location of the sub-graph currently being viewed

with respect to the graph as a whole. To that end, Indra attempts to

provide a simple and intuitive interface for navigation. At any given

time, the sub-graph representing the current location is displayed in

the center of the interface. Users can get information about lower-

level sub-graphs by hovering over their corresponding super-nodes

and drill-down to them by clicking on the super-node. Users can

roll-up to either the encapsulating super-node or the very top level

of the visualization by clicking one of the buttons near the top of the

interface. Indra also displays an abstraction of all the adjoining sub-

graphs as a network around the edges of the interface. Users can

pan to an adjoining sub-graphs by clicking on the corresponding

node.

4.3.5 Panning Operations. Panning in Indra is the process of mov-

ing across sub-graphs on a single layer and can be thought of as

changing the vertical scope of the visualization. Panning does not

change the viewpoint path level or significantly impact the por-

tion of the graph being displayed, it simply changes the current

view from one sub-graph to an adjoining sub-graph. In order to

reduce the complexity of both the visualization and the navigation

controls, panning is restricted to adjoining sub-graphs; it is not

possible to jump directly to a sub-graph disconnected from the one

currently being visualized. This is due to the exceptionally large

number of sub-graphs at lower viewpoint path levels. However,

such jumps can be made by rolling-up one level and selecting the

desired sub-graph from the new visualization.

5 EVALUATION
We evaluate Indra on several factors, including the time required

to index with the viewpoint path algorithm, the quality of the gen-

erated indexing scheme, and the server’s throughput and latency

in responding to queries. We use two 1,000,000 node datasets in

our indexing scheme time and throughput/latency evaluations: a

social network graph collected from Pokec, a Slovakian social net-

work exhibiting small-world properties and containing 30,000,000

edges, and a graph generated from Pennsylvania’s road network

which exhibits very sparse connectivity with only 1,000,000 edges.

Our indexing scheme quality evaluation was performed with the

DBLP (a database of computer science articles, papers, and other

publications) collaboration graph consisting of 300,000 nodes and

1,000,000 edges, and containing labeled communities.

Our benchmarks were performed on a Spark cluster consisting

of 70 machines, each with 4 2.60GHz CPUs and 10GB of memory.

Sample graphs were generated by selecting nodes and their con-

necting edges from the datasets by randomly assigning a unique ID

to each vertex and removing all vertices with an ID less than the

sample size.

5.1 Hierarchical Indexing Scheme Time
We compare Indra’s hierarchical indexing scheme time across ini-

tial indexing schemes generated by the Degree-Indexing, KeepAll,

and Jaccard-Indexing algorithms in figure 5. The output of each ini-
tial indexing scheme is a graph consisting of 100 important vertices

and a variable number of edges.

In every case the indexing scheme on the social network dataset

is significantly faster than the indexing scheme on the road dataset.

This is due to the fact that the upper-bound on the number of

iterations Indra’s indexing scheme algorithm must perform is the

distance between the most important node and the node furthest

from it. Because social networks exhibit small-world properties the

average path-length between any two nodes is exceptionally low.

Consequently, the maximum number of iterations needed to index

the social-network graph is much lower.

In figure 5 it can be seen that the required indexing scheme

time increases sub-linearly; doubling the size of the graph does

not double the indexing scheme time. Remarkably, the indexing

scheme time on the social network graph appears to increase loga-
rithmically. When the size of the graph increases by three orders of

magnitude the indexing scheme time increases by approximately

one. This bodes exceptionally well for Indra’s performance on

graphs consisting of hundreds of millions to billions of nodes, and

suggests that the bottle-neck will be storage space and not compu-

tation time.

Finally, it is also apparent that the hierarchical indexing scheme

time is not independent of the initial indexing scheme, as the index-

ing scheme initialized with KeepAll completes twice as quickly as

Degree-Indexing and Jaccard-Indexing. This is most likely the result

of the Degree and Jaccard Indexings providing a subset of nodes

distributed widely across the graph while the KeepAll algorithm

Figure 5: Indra’s hierarchical indexing scheme run-time based on the initial indexing scheme. The social network graph always indexes

much faster due to its small-world properties. Starting with KeepAll yields the fastest indexing scheme time and Jaccard-Indexing the slowest.

Figure 6: The average percentage of nodes in each sub-graph which belong to the same ground-truth community at each level of indexing.

Desirable qualities are a low percentage at the top levels and a high percentage at the lower levels. Based on this measure, starting with a

Jaccard-Indexing appears to yield to best results on the collaboration graph.

provides a connected subset of nodes. The tightly clustered nodes

from KeepAll have fewer total neighbors and consequently prompt

fewer computations during each iteration. The explanation for why

initializing with Degree-Indexing appears to be slightly slower than

with Jaccard-Indexing is similar, as the important nodes selected by

Degree-Indexing are biased towards nodes with many neighbors.

5.2 Quality of Summarization
There is no standard method to evaluate the quality of a hierar-

chical graph summarization. Consequently, we choose to measure

the quality of Indra’s hierarchical indexing scheme by comput-

ing the proportion of nodes in each sub-graph which belong to a

ground-truth community. The assumption behind this measure is

that sub-graphs with a higher resolution should represent a portion

of a single community with most super-nodes in the sub-graph

belonging to that community. Conversely, sub-graphs with a low

resolution should represent interactions between communities and

contain a diverse set of super-nodes belonging to many different

communities. Under these assumptions, a high quality indexing

scheme should have a relatively low proportion of nodes in the

same ground-truth community in low-resolution sub-graphs and a

high proportion of nodes in the same community in high resolution

sub-graphs.

We perform this evaluation with the DBLP collaboration graph.

The nodes represent authors, the edges connect two authors who

have published at least one paper together, and the ground-truth

communities are publishing venues. It is possible for an author to

have published in multiple venues and belong to multiple ground-

truth communities. The ratio we compute for each sub-graph is the

number of super-nodes belonging to the most represented commu-

nity in the sub-graph against the total number of super-nodes in

the sub-graph. We compute the average across every sub-graph at

each viewpoint path level. The results are shown in Figure 6.
Based on our established criteria, starting with Jaccard-Indexing

produces the best hierarchical indexing scheme. At the top level

less than 1/3
rd

of the vertices belong to the same ground-truth

community, while at the bottom level almost 4/5
ths

of vertices in

each sub-graph do. Degree-Indexing reaches a higher proportion

of member vertices at low levels than Jaccard-Indexing, however

it lacks diversity at high levels. KeepAll performs well at both low

levels and the highest level, but there is very little diversity in

its intermediate levels (although this may be desirable for some

use-cases).

These results are not surprising as Jaccard-Indexing is designed

for collaboration and interaction graphs. However, it does illustrate

the manner in which the initial indexing scheme algorithm used for

Indra influences the properties of its hierarchical indexing scheme.

Figure 7: Indra’s latency and throughput querying graphs of different sizes, averaged over twenty 10-second runs. Querying with a

viewpoint path length of zero requires no comparisons and is very fast. The difference in query time between viewpoint paths of lengths

greater than zero is visible, but small. Throughput is independent of path length for graphs larger than 200,000 nodes.

It also demonstrates how Indra successfully reduces the diversity

of sub-graphs at each successive level of the hierarchical indexing

scheme as the scope of the visualization narrows from interactions

between communities to interactions within communities.

5.3 Interactive Latency
Speed in an interactive application is paramount, so it is essential

that Indra is capable of processing queries with a very low latency.

Additionally, Indra’s server based nature makes it possible for

multiple clients to simultaneously explore the same dataset. To

make this feasible a high throughput is required to handle many

queries at the same time without adversely impacting performance.

We analyze Indra’s latency and throughput in figure 7.
It should be noted that the latency is heavily dependent on the

number of processors in the cluster, however it can be seen that

Indra scales well with an increasing number of nodes. Doubling

the size of the graph increases the query time by approximately

50%. Queries with a path length of zero are exceptionally fast as

they merely filter for the initial indexing scheme and don’t need

to compare viewpoint paths. Queries with a viewpoint path are

slightly slower, however the length of the viewpoint path has a

relatively small effect on latency. The difference in latency between

queries with a viewpoint path of length two and length ten averages

less than 1/5
th
of a second.

Figure 7 demonstrates the remarkable fact that Indra’s through-

put is largely independent of the size of the graph being queried,

remaining at approximately 10 queries per second for graphs larger

than 200,000 nodes. This suggests that a single Indra server can

accommodate at least 10 simultaneous clients and probably more,

as clients are unlikely to be performing queries every second. It’s

unclear why the throughput is lower for small graph sizes, however

it is most plausibly because the graph is more sparsely distributed

across the cluster, incurring higher overheads.

6 CONCLUSIONS AND FUTUREWORK
In visual analytics applications, having a structure that assists a

user’s navigation is critical. This is especially true when explor-

ing voluminous graph datasets. Indra’s viewpoint path indexing

scheme provides a semantically pivoted hierarchical view to a non-

hierarchical graph. The highest-level overview consists of the most

semantically important vertices and supports maximum details of

less important graph components. Users can specify the initial in-

dexing scheme algorithm based on the objectives of their analysis

(RQ1 and RQ2).

To provide the interactive responsiveness to visual analytics

applications, data rendering, retrieval query evaluation, and batch

computation must be seamlessly streamlined to reduce the end-to-

end latency. The compute-intensive indexing phase is performed

completely off-line and data retrieval relies on a distributed query

evaluation over memory resident indices. Indra orchestrates data

retrievals for multiple views without redundancy to reduce latency

(RQ 3).

Finally, to facilitate comprehensive exploration of large datasets,

a visual analytics application must provide multiple views for the

same subset and orchestrate these views in real-time. Indra pro-

vides multiple analytics views and resolutions of data. The dash-

board consists of graph view, charts, and sub-graph views. It also

allows users to drill-down and roll-up the current view (RQ4).

As part of our future work we plan to explore automatic identifi-

cation/updates of data summarization based on a user’s exploration

patterns. We will also extend our visualization features to support

user-customized computations such as calculating the diameter or

number of triangles within a user-specified sub-graph.

ACKNOWLEDGMENTS
This research was supported by grants the US National Science

Foundation [OAC-1931363, ACI-1553685], the US Department of

Homeland Security [D15PC00279], the Advanced Research Projects

Agency- Energy(ARPA-E), and a Cochran Family Professorship. We

thank David Lee for his assistance during initial discussions.

REFERENCES
[1] Facebook. Facebook Newsroom stats, 2019.

[2] Twitter. Twitter Q1 2019 Earnings Report. https://s22.q4cdn.com/826641620/

files/doc_financials/2019/q1/Q1-2019-Slide-Presentation.pdf, March 2019.

[3] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label

propagation: A multiresolution coordinate-free ordering for compressing social

networks. In Proceedings of the 20th International Conference on World Wide Web,
WWW ’11, pages 587–596, New York, NY, USA, 2011. ACM.

[4] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time

algorithm to detect community structures in large-scale networks. Phys. Rev. E,
76:036106, Sep 2007.

[5] K. M. Borgwardt and H. P. Kriegel. Shortest-path kernels on graphs. In Fifth
IEEE International Conference on Data Mining (ICDM’05), pages 8 pp.–, Nov 2005.

[6] Matthijs van Leeuwen, Jilles Vreeken, and Arno Siebes. Compression picks item

sets that matter. In Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou,

editors, Knowledge Discovery in Databases: PKDD 2006, pages 585–592, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[7] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. Fast unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment, 2008(10):P10008, oct 2008.

[8] Deepayan Chakrabarti, Yiping Zhan, Daniel Blandford, Christos Faloutsos, and

Guy Blelloch. Netmine: Mining tools for large graphs. 01 2004.

[9] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney.

Statistical properties of community structure in large social and information

networks. In Proceedings of the 17th International Conference on World Wide Web,
WWW ’08, pages 695–704, New York, NY, USA, 2008. ACM.

[10] B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri, Sridhar Machiraju, and

Christos Faloutsos. Eigenspokes: Surprising patterns and scalable community

chipping in large graphs. In Mohammed J. Zaki, Jeffrey Xu Yu, B. Ravindran, and

Vikram Pudi, editors, Advances in Knowledge Discovery and Data Mining, pages
435–448, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[11] Xifeng Yan, Hong Cheng, Jiawei Han, and Philip S. Yu. Mining significant graph

patterns by leap search. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’08, pages 433–444, New York, NY,

USA, 2008. ACM.

[12] Xifeng Yan and Jiawei Han. gspan: graph-based substructure pattern mining.

In 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pages
721–724, Dec 2002.

[13] Cody Dunne and Ben Shneiderman. Motif simplification: Improving network

visualization readability with fan, connector, and clique glyphs. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, pages
3247–3256, New York, NY, USA, 2013. ACM.

[14] Corinna Vehlow, Fabian Beck, and Daniel Weiskopf. The State of the Art in Visu-

alizing Group Structures in Graphs. In R. Borgo, F. Ganovelli, and I. Viola, editors,

Eurographics Conference on Visualization (EuroVis) - STARs. The Eurographics
Association, 2015.

[15] Anna C. Gilbert and Kirill Levchenko. Compressing network graphs. InWorkshop
on Link Analysis and Group Detection, Seattle, WA, USA, 2004. ACM.

[16] Hannu Toivonen, Fang Zhou, Aleksi Hartikainen, and Atte Hinkka. Compression

of weighted graphs. In KDD ’11 Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 965–973, San Diego,

California, USA, 2011. ACM.

[17] Fang Zhou, Sebastien Malher, and Hannu Toivonen. Network simplification

with minimal loss of connectivity. In 2010 IEEE International Conference on Data
Mining, pages 659–668, Sydney, NSW, 2010. IEEE.

[18] Daniel Hennessey, Daniel Brooks, Alex Fridman, and David Breen. A simplifica-

tion algorithm for visualizing the structure of complex graphs. In International
Conference on Information Visualisation (IV), pages 616–625, London, 2008. IEEE.

[19] Jie Sun, Erik M. Bollt, and Daniel ben-Avraham. Graph compression—save

information by exploiting redundancy. Journal of Statistical Mechanics: Theory
and Experiment, 2008(6):06001, Jun 2008.

[20] Lei Shi, Qi Liac, Xiaohua Sun, Yarui Chen, and Chuang Lin. Scalable network

traffic visualization using compressed graphs. In IEEE International Conference
on Big Data, pages 606–612, Silicon Valley, CA, 2013. IEEE.

[21] Tomas Feder and Rajeev Motwani. Clique partitions, graph compression and

speeding-up algorithms. In STOC ’91 Proceedings of the twenty-third annual ACM
symposium on Theory of Computing, pages 123–133, New Orleans, Louisiana,

USA, 1991. ACM.

[22] RyanA. Rossi and Rong Zhou. Graphzip: a clique-based sparse graph compression

method. In Journal of Big Data 2018, pages 5–10. Springer Nature, 2018.
[23] Yike Liu, Tara Safavi, Neil Shah, and Danai Koutra. Reducing large graphs to

small supergraphs: a unified approach. In Social Network Analysis and Mining,

pages 8–17. Springer Vienna, 2017.

[24] Lixia Zhang and Jianliang Gao. Incremental graph pattern matching algorithm

for big graph data. In Scientific Programming Volume 2018, page 8 pages. Hindawi,
2018.

[25] Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel. Efficient aggregation

for graph summarization. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 567–580, Vancouver, Canada, 2008.
ACM.

[26] Arlei Silva, Petko Bogdanov, and Ambuj K. Singh. Hierarchical in-network

attribute compression via importance sampling. In 2015 IEEE 31st International
Conference on Data Engineering (ICDE), pages 951–962, Seoul, South Korea, 2015.

IEEE.

[27] Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu. Query preserving graph

compression. In SIGMOD ’12 Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 157–168, Scottsdale, Arizona, USA,
2012. ACM.

[28] Anurag Khandelwal, Zongheng Yang, Evan Ye, Rachit Agarwal, and Ion Stoica.

Zipg: A memory-efficient graph store for interactive queries. In SIGMOD ’17
Proceedings of the 2017 ACM International Conference on Management of Data,
pages 1149–1164, Chicago, Illinois, USA, 2017. ACM.

[29] Yogesh L. Simmhan, Sangmi Lee Pallickara, Nithya N. Vijayakumar, and Beth

Plale. Data management in dynamic environment-driven computational science.

In Patrick W. Gaffney and James C. T. Pool, editors, Grid-Based Problem Solving
Environments, pages 317–333, Boston, MA, 2007. Springer US.

[30] Sangmi Lee Pallickara, Shrideep Pallickara, andMilija Zupanski. Towards efficient

data search and subsetting of large-scale atmospheric datasets. Future Gener.
Comput. Syst., 28(1):112–118, January 2012.

[31] N. Shah, H. Shah,M.Malensek, S. L. Pallickara, and S. Pallickara. Network analysis

for identifying and characterizing disease outbreak influence from voluminous

epidemiology data. In 2016 IEEE International Conference on Big Data (Big Data),
pages 1222–1231, Dec 2016.

[32] S. Mitra, P. Khandelwal, S. Pallickara, and S. L. Pallickara. Stash: Fast hierarchical

aggregation queries for effective visual spatiotemporal explorations. In IEEE
International Conference on Cluster Computing (CLUSTER), Albuquerque, NM,

USA., 2019.

[33] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen North, Gordon Wood-

hull, Short Description, and Lucent Technologies. Graphviz - open source graph

drawing tools. In Lecture Notes in Computer Science, pages 483–484. Springer-
Verlag, 2001.

[34] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network

structure, dynamics, and function using networkx. In Gaël Varoquaux, Travis

Vaught, and Jarrod Millman, editors, Proceedings of the 7th Python in Science
Conference, pages 11–15, Pasadena, CA USA, 2008.

[35] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An open

source software for exploring and manipulating networks. International AAAI
Conference on Weblogs and Social Media, 2009.

[36] Shannon P., Markiel A., Ozier O., Baliga NS., Wang JT., Ramage D., Amin N.,

Schwikowski B, and Ideker T. Cytoscape: a software environment for inte-

grated models of biomolecular interaction networks. Genome Research 2003 Nov;
13(11):2498-504, 2003.

[37] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion

Stoica. Spark: cluster computing with working sets. In HotCloud’10 Proceedings of
the 2nd USENIX conference on Hot topics in cloud computing, pages 10–10, Boston,
MA, 2010. USENIX.

[38] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale

graph processing. In Proceedings of the 2010 ACM SIGMOD International Confer-
ence on Management of data, pages 135–146, Indianapolis, Indiana, USA, 2010.
ACM.

[39] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven documents.

In IEEE Transactions on Visualization and Computer Graphics Volume 17 Issue 12,
December 2011, pages 2301–2309, Piscataway, NJ, USA, 2011. IEEE.

[40] Peter Eades and Xuemin Lin. Spring algorithms and symmetry. In Theoretical
Computer Science Volume 240, Issue 2, pages 379–405. Elsevier, 2000.

[41] John A Hoxmeier and Chris Dicesare. System response time and user satisfac-

tion: An experimental study of browser-based applications. Proceedings of the
Association of Information Systems Americas Conference, 01 2000.

[42] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

hadoop distributed file system. In MMSST ’10 Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST), pages 1–10, Wash-

ington, DC, USA, 2010. IEEE.

[43] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.

Franklin, and Ion Stoica. Graphx: graph processing in a distributed dataflow

framework. In OSDI’14 Proceedings of the 11th USENIX conference on Operat-
ing Systems Design and Implementation, pages 599–613, Broomfield, CO, 2014.

USENIX.

https://s22.q4cdn.com/826641620/files/doc_financials/2019/q1/Q1-2019-Slide-Presentation.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2019/q1/Q1-2019-Slide-Presentation.pdf

	Abstract
	1 Introduction
	1.1 Research Questions
	1.2 Overview of Approach
	1.3 Paper Contributions
	1.4 Paper Organization

	2 Related Work
	2.1 Graph Summarization
	2.2 Importance Summarization Algorithms
	2.3 Similarity Summarization Algorithms
	2.4 Hierarchical Summarization Algorithms
	2.5 Graph Analysis
	2.6 Graph Visualization

	3 Methodology
	3.1 Hierarchical Sub-Graph Retrieval Query (RQ1)
	3.2 Viewpoint Path: Hierarchical Graph Indexing Scheme (RQ2, RQ3)

	4 System Architecture and Capabilities
	4.1 Client Application
	4.2 Server
	4.3 Interactive Visualization Features (RQ4)

	5 Evaluation
	5.1 Hierarchical Indexing Scheme Time
	5.2 Quality of Summarization
	5.3 Interactive Latency

	6 Conclusions and Future Work
	Acknowledgments
	References

