
ATLAS: A Distributed File System for Spatiotemporal Data

Daniel Rammer, Sangmi Lee Pallickara, and Shrideep Pallickara
Department of Computer Science

Colorado State University
Fort Collins, Colorado, USA

{rammerd,sangmi,shrideep}@cs.colostate.edu

ABSTRACT

A majority of the data generated in several domains is geo-
tagged. These data also have a chronological component as-
sociated with them. Pervasive data generation and collection
efforts have led to an increase in data volumes. These data
hold the potential to unlock valuable insights. To facilitate
such knowledge extraction in a timely manner, the underlying
file system must satisfy several objectives. In this study, we
present Atlas, a distributed file system designed specifically
for spatiotemporal data. Atlas includes several capabilities
that are suited for performing large-scale analyses: aligning
dispersion with data access patterns, load balancing storage,
and facilitating interoperation with analytical engines such
as Hadoop and Spark. Our empirical benchmarks profile sev-
eral aspects of Atlas, and demonstrate the suitability of our
methodology.

CCS CONCEPTS

� Information systems � Distributed storage; Dis-
tributed retrieval; Specialized information retrieval;
Geographic information systems; Retrieval effectiveness.

KEYWORDS

spatiotemporal data, file systems, analytics, HDFS

ACM Reference Format:

Daniel Rammer, Sangmi Lee Pallickara, and Shrideep Pallickara.
2019. ATLAS: A Distributed File System for Spatiotemporal Data.
In Proceedings of the IEEE/ACM 12th International Conference

on Utility and Cloud Computing (UCC ’19), December 2–5, 2019,
Auckland, New Zealand. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3344341.3368802

1 INTRODUCTION

A majority of the data generated in several domains are
geospatial. These domains include atmospheric sciences, en-
vironmental and ecological monitoring, smart communities,

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

UCC ’19, December 2–5, 2019, Auckland, New Zealand

© 2019 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-6894-0/19/12. . . $15.00
https://doi.org/10.1145/3344341.3368802

geosciences, and commerce. Sources of this data include so-
cial media, simulations, and networked observational devices
and remote sensing equipment. Furthermore, increases in the
number of data sources have occurred alongside the growth
in the rate and precisions at which geotagged data are being
generated. This has contributed to a dramatic increase in
cumulative data volumes. Timely and effective knowledge
extraction is predicated on efficient storage, and subsequent
processing of this data.

Spatiotemporal data management efforts have primarily
focused on encoding rather than the design of file systems.
Encoding targets descriptiveness and access to individual
features within the encoded data. The encoded data has
an implicit lightweight schema associated with it. This can
be used to facilitate programmatic access to observations
and feature values. Another consideration during encoding is
verbosity and the corresponding increase in size over binary
data. Compact encoding formats, such as BUFR, focus on
ensuring that that the descriptiveness of the data does not
substantially add to the data volumes. Several data formats
are in use to encode geospatial data. These include netCDF,
HDF, BUFR, GeoTIFF, etc. However, when it comes to file
systems designed specifically for spatiotemporal data, the
efforts have been few and far in between.

Data storage must satisfy a set of key interrelated objec-
tives. In particular, besides archival (for fidelity and repro-
ducibility) the storage subsystem must facilitate discovery
and subsequent analyses. Given the data volumes, storage
on a single machine is infeasible. A distributed environment
introduces challenges relating to load balancing to avoid
hotspots and resource underutilizations. Finally, given the
number and scope of analytic operations a key requirement
for modern storage systems is how effectively they support
completion times for analytic jobs launched over the data.
In summary, storage schemes must manage dispersion of
data items, coordination for servicing discovery and query
evaluations, and facilitate effective support for analysis.

There are two dominant approaches to manage spatiotem-
poral data, both of which adversely impact completion times
for analytic operations. The first approach groups all data
from a geographical extent (typically by computing a geo-
hash) and stores them on the same machine. Approaches
based on distributed hash tables leverage this approach. This
grouping strategy results in reduced concurrency for analytic
operations. However, given the data volumes, analyses must
be concurrent and sequential processing of data from a geo-
graphical extent is infeasible. The second approach, disperses
data items without accounting for spatial properties. A key

https://doi.org/10.1145/3344341.3368802
https://doi.org/10.1145/3344341.3368802

UCC ’19, December 2–5, 2019, Auckland, New Zealand Daniel Rammer, Sangmi Lee Pallickara, and Shrideep Pallickara

focus of this approach is to ensure load balancing across the
set of available nodes. This results in substantial data move-
ments during analytical operations and prolonged completion
times for analytic tasks.

We posit that data accesses, and the I/O that this entails,
is the key to ensuring fast, effective analytics. Our hypothesis
is predicated on the characteristics of the I/O subsystem and
the steep speed differential of the memory hierarchy. While
storage capacities increase down the memory hierarchy (from
the registers, caches, memory, and disk), there is a correspond-
ing increase in access times and reduced throughputs during
transfers. Given that the CPU is 6-7 orders of magnitude
faster than disk accesses, a consequence is that analytic tasks
are I/O bound. The crux of this paper is the design
of file system for spatiotemporal data that alleviates
I/O overheads during processing tasks triggered by
analytic tasks.

1.1 Challenges

Designing a distributed file system that enables effective
analytics over geospatial data has several challenges. These
include:

∙ Impedance mismatch in how the data is stored and how
they must be processed. Dispersion schemes that do not
effectively account for the spatiotemporal characteristics
of the data result in data movements during analytics that
prolong completion times.

∙ Support for concurrent processing of data from a geospatial
extent. To ensure effective completion times, analytical
operations launched over a particular spatial extent must
be performed concurrently with attenuated network I/O.

∙ I/O amplification: Disk blocks are the units of data transfer
between the memory subsystem and the disk. This means
that even if the data item that is request is a byte of data,
what is read is a block. Ineffective data collocations amplify
the volume of the disk I/O that need to be performed.

∙ Operation in shared clusters: Data storage, retrievals, and
analytic operations occur within shared clusters. Given that
analytic operations are I/O bound, ineffective dispersion
schemes result in I/O amplifications. Given that these
operations take place in shared clusters, these are also
subject to contention and reduce throughputs that such
interference introduces.

∙ Interoperation with analytical engines: Several analytical
engines, such as Hadoop and Spark, are now available
with effective support for orchestration of computational
workloads from analytic workflows. These engines also
include support for several model fitting algorithms based
on statistical and machine learning. File systems that do not
effectively interoperate with analytical engines represent
a siloing of the data space that precludes the ability to
leverage libraries that have developed as part of these
engines.

1.2 Research Questions

The broader research question that guides this study is how
we can design a distributed file system specifically for spa-
tiotemporal data that supports effective analyses over vo-
luminous data. Specific research questions that we explore
include:

RQ-1: How can we effectively account for spatiotemporal
characteristics of the data?
RQ-2: How can we support segmentation of the data?
RQ-3: How can we facilitate interoperation with analytical
engines?
RQ-4: How can we reconcile the competing pulls of dis-
persion and collocation to facilitate efficient concurrent
analyses?

1.3 Approach Summary

We extract spatiotemporal markers from observations. The
spatial components may be expressed as either standalone
<lat, long >coordinates or as bounding boxes. We leverage
the geohash algorithm to organize observations as part of
files. In particular, the geohash algorithm converts spatial
coordinates into a configurable precision string representation
of a geographical extent; the greater the precision of (or the
longer) the string, the smaller the geographical bounding box
represented by the geohash.

We leverage geohashes to organize observations in files.
The file that an observation belongs to is deterministically
calculated using the geohash algorithm. All data within a
particular spatial extent represented by the geohash is orga-
nized within a file. Each file is distributed over the cluster of
available machines. This allows the file, either in its entirety
or portions thereof, to be processed concurrently as part of
analytics jobs. We place no limits on the size of the files.
Because the files are dispersed over the collection of machine,
and there no size limits that are imposed, we are able to cope
with diversity in the available observations.

Each file in Atlas comprises chunks. Each chunk is fully
resident on a single machine, but chunks that comprise the
file are distributed over the available machine. Chunks have
a fixed size, and as new observations become available a new
chunk is added to the file. Newly ingested observations are
added to chunks. The system maintains metadata about the
number and order of chunks comprising a file.

Atlas satisfies two key objectives during the placement of
chunks within the cluster: redundancy and load balancing. We
accomplish redundancy via replication. Once the replication
level for a file has been specified, each chunk within the
file is replicated on different machines (to avoid correlated
failures) until the desired replication level has been reached.
The chunks comprising a file are dispersed over the cluster
such that loads are evenly distributed. In particular, our
dispersion scheme ensures that multiple, successive chunks
are stored on different machines and also ensures that storage
imbalances do not occur within the cluster. Each machine
takes on storage loads that are commensurate with their

ATLAS: A Distributed File System for Spatiotemporal Data UCC ’19, December 2–5, 2019, Auckland, New Zealand

capabilities, and disk utilization skews (based on percentage
utilizations) do not occur within the cluster.

We leverage segmentation within chunks to group proxi-
mate observations; this segmentation allows us to facilitate
block transfers of observations. Such block transfers reduce
both the number and intensity of I/O operations within the
system. Each chunk segments data into smaller, contiguous
spatial extents within the larger geographical scope encapsu-
lated by the file. Successive chunks include observations that
are temporally proximate. This scheme allows chunks within
a file to preserve spatiotemporal proximity and counteract
inefficient spatiotemporal data access patterns.

The organization and dispersion of observations within
an Atlas file aligns well with how data are processed during
analytic jobs. In particular, tasks have data locality and
transfers are performed in blocks based on spatiotemporal
characteristics. This counteracts I/O amplifications and the
ensuing prolonged completion times. The Atlas metadata
management scheme allows fast identification of relevant
portions of the data space; queries may specify spatiotemporal
scopes of interest and the files and chunks representing this
interest are identified in real-time.

To support interoperation with analytical engines, we make
Atlas HDFS (Hadoop Distributed File System) compliant.
Several analytical engines, such as Hadoop, Spark, and Ten-
sorFlow, use HDFS as the source of their input data. HDFS
is a very mature specification, and several robust implementa-
tions of HDFS-compliant storage systems now exist. Making
Atlas HDFS compliant allows us to seamlessly interoperate
with analytical engines during spatiotemporal data analyses.
Furthermore, because Atlas is tailored towards minimizing
I/O amplifications during processing, the spatiotemporal
analyses expressed using these analytical engines complete
faster.

1.4 Paper Contributions

The Atlas file system supports high-throughput data storage,
retrieval and analytic operations for geospatial data using
analytical engines. In particular, our contributions include:

∙ A file system that accounts for the spatiotemporal charac-
teristics of the data. Atlas performs metadata management
and organizes the spatiotemporal data so that discovery
and seek operations within a file are fast and amenable to
concurrent analysis using analytical engines.

∙ To our knowledge, Atlas is the first spatiotemporal file
system that is HDFS-compliant.

∙ Our data organization scheme and HDFS-compliance facil-
itate concurrent analytics of data. Our methodology also
allows us to launch processing tasks on several spatial
extents concurrently. In particular, Atlas allows users to
effectively isolate/identify files, and portions thereof, that
need to be accessed.

2 METHODOLOGY

Figure 1 depicts the Atlas systems architecture. To ensure
systems performance at scale, our design separates control

Figure 1: The Atlas architecture highlighting the separation
of control and data planes and the hierarchy of provided pro-
tocols and application interfaces within Atlas.

and data planes by partitioning machines within cluster into
namenodes and datanodes. Namenodes support discovery
and manage namespace information relating to file place-
ments, replication, and spatiotemporal indices. Datanodes
are responsible for data storage and retrieval. This functional
separation simplifies fault tolerance and scalability consider-
ations within Atlas.

Our methodology to design an efficient distributed file
system for spatiotemporal data encompasses the following:

∙ Counteracting inefficient spatiotemporal data access pat-
terns: Retrieval of data within a specific spatiotemporal
scope from a set of files often requires non-sequential disk
reads that adversely impact analytics performance. These
inefficiencies are a product of data reporting techniques,
where data seldom aligns with spatiotemporal attributes
resulting in intertwined spatiotemporal scopes within files.
Atlas distributes and dynamically rearranges data to align
with spatiotemporal scopes, providing targeted, sequential
disk reads during retrieval. [RQ-1, RQ-2]

∙ Reconciling the competing pulls of dispersion and locality:
Distributed analytics tasks tend to perform optimally with
a specific data distribution policy. However, the optimal
policy varies across analytic tasks and different data dis-
tribution policies often contradict each other – no scheme
fits all. Data dispersion and locality are the two extremes,
distributing data evenly over the cluster and confining data
to a small subset of hosts respectively. By chunking the
dataspace and replicating data based on spatiotemporal
scopes Atlas provides a unique data distribution policy,
where analytics may leverage both dispersion and locality
concurrently. [RQ-1, RQ-4]

∙ Support for effective reduction operations: Spatiotempo-
ral analytics often require identification and retrieval of a
specific data scope. Traditional solutions require iterating
over each observation, and filtering out those that do not
satisfy the query predicates. Atlas maintains a spatiotem-
poral index over the underlying data, facilitating efficient
identification and retrieval of spatiotemporal subspaces.
[RQ-1]

∙ Integrating with analytics tools: Distributed analytics tools
are a key component in many existing workflows. Several
analytical engines interoperate with HDFS using it as the
source and destination of analytic jobs. Therefore, we have

UCC ’19, December 2–5, 2019, Auckland, New Zealand Daniel Rammer, Sangmi Lee Pallickara, and Shrideep Pallickara

Figure 2: Block indexing within Atlas datanodes. Block ob-
servations are rearranged to align with spatiotemporal char-
acteristics improving search and retrieval performance.

incorporated HDFS-compliance within Atlas; since it uses
the same communication protocols as canonical HDFS it
can be used anywhere that HDFS is used. This enables
seamless integration with applications supporting HDFS.
[RQ-1, RQ-3]

2.1 Counteracting Inefficient
Spatiotemporal Data Access Patterns
[RQ-1, RQ-2]

Sequential file reads offer the best performance, in terms of
throughput and transfer times, during data retrieval. How-
ever, this process lacks support for spatiotemporal filtering,
where identification and retrieval of a specific spatiotemporal
scope requires iteration over the entire dataset and filtering
of observations individually. This introduces a number of inef-
ficiencies including computational overhead and unnecessary
disk and network I/O.

The main challenge in identification and retrieval of spe-
cific spatiotemporal scopes is that data reporting seldom
aligns with spatiotemporal attributes. Rather, files tend to
contain a diverse collection of spatiotemporal scopes. This
contributes to two inefficiencies. First, relying on filtering at
the observation granularity incurs unnecessary computational
overhead, disk I/O, and network I/O. Second, non-sequential
disk reads entail significant disk head movements, negatively
impacting read performance.

A critical component within Atlas is the geohash algo-
rithm, which converts 2-dimensional coordinates to a string
representation. The original implementation is base-32, but
we have designed a base-16 variant, producing hexadecimal
strings. The algorithm produces a bit string, in iterations of 4
bits, where each iteration produces another output character.
The basis is splitting the maximum and minimum bounds,
alternating between X and Y coordinates, and appending a 0
or 1 to the bit sequence if the indexed value is in the upper
or lower half, respectively. For example, the original Y mini-
mum and maximum values are -90 and 90 in the Cartesian

0 1000 2000 3000 4000 5000 6000 7000
Block Index

0

2

4

6

8

10

12

14

Du
ra

tio
n

(s
ec

on
ds

)

64MB 128MB 256MB

Figure 3: Block indexing durations (sorted longest to shortest)
over 1TB of data using block sizes of 64MB, 128MB, and
256MB. Regardless of the block size, cumulative completion
times do not incur significant variance.

coordinate system. We begin by splitting the range in half,
the lower half being -90 to 0 and the upper 0 to 90. If we
are indexing a coordinate with a Y value of 45 we append a
1 to the bit string. The next iteration of Y computation is
performed with minimum and maximum bounds of 0 and 90
respectively.

Atlas relies on chunking the dataset to aid in efficient
data access. This is performed by partitioning input data
files into multiple blocks which may then be distributed
and replicated over the cluster. As blocks are written to the
system, observations are dynamically rearranged to align with
spatiotemporal boundaries. We refer to this segmentation as
producing striped sets. The process begins by computing the
geohashes for each observation, an operation that supports
points, lines, and polygons. Next, observations are rearranged
so that spatial scopes are contiguous, and temporally adjacent
and increasing, within the block. This procedure is performed
in-memory to reduce computational and I/O overhead.

Rearranging observations within blocks to align with spa-
tiotemporal boundaries simplifies identification and retrieval
of dataspace subsets. The shuffling allows for fast identifica-
tion of a spatiotemporal dataspace, where positional indices
(i.e., data offsets and length) for each block correspond to
a spatiotemporal range. Additionally, data retrievals can be
performed with sequential disk reads, mitigating the perfor-
mance degradation caused by excessive disk head movements.
The process of chunking and indexing the dataspace is out-
lined in Figure 2.

Micro-Benchmark Profiling Indexing: In Figure 3 we
profile the block indexing performance when writing 1TB
of data into an Atlas cluster of 50 hosts. We performed
three separate experiments with three different block sizes,
namely 64MB, 128MB, and 256MB. Block index durations
were sorted from longest to shortest and plotted along the
x-axis. We see that index duration is consistently efficient,
on the order of a few seconds. Moreover, data insertions in
Atlas are asynchronous, where completing the indexing over
one block does not delay insertion of the next. Additionally,

ATLAS: A Distributed File System for Spatiotemporal Data UCC ’19, December 2–5, 2019, Auckland, New Zealand

0 10 20 30 40 50
Hosts

0

2

4

6

8

10

Da
ta

 S
ize

 (T
B)

Figure 4: Data managed by each of 49 datanodes within the
Atlas cluster after inserting 150TB of data. This demonstrates
Atlas’ ability to load-balance data while ensuring dispersion
and collocality.

total data indexing time does not significantly differ across
the three experiments.

2.2 Reconciling the Competing Pulls of
Dispersion and Locality [RQ-1, RQ-4]

Many analytics tasks benefit from specific data distribution
policies – a one size fits all solution does not exist. Data
dispersion and locality are the two extremes. Dispersion
focuses on distributing data evenly across each machine, but
often triggers excessive data movements within the shared
cluster. Alternatively, locality supports processing an entire
dataspace on a single host, which is useful when the algorithm
requires an omniscient view (ex. data joins).

Supporting a data distribution technique that performs
well in myriad analytic flavors is difficult. This problem is
compounded by support for spatiotemporal data, where an-
alytics are often performed on dataspace subsets, meaning
control of data distribution must be performed at a much finer
granularity. Atlas addresses two key challenges in providing
efficient execution over diverse analytics. (1) The spatiotem-
poral scope of blocks are not known until they are indexed.
This means that data distribution must be performed in mul-
tiple stages, comprising pre-indexing and post-indexing. (2)
Balancing the trade-off between distributing data to provide
efficient analytics and load-balancing data storage. Skewed
data distributions result in host hotspots, mitigating many
of the advantages of distributed storage and processing.

The Atlas distribution algorithm aims to support both
data dispersion and locality simultaneously. Clients begin by
writing data, in partitioned blocks, to the cluster. Initial block
placement is determined by the namenode, which analyzes
storage patterns to determine hosts with lower disk usage.
Once written, the block indexing process is performed as
described in Section 2.1, resulting in computation of the
specific spatiotemporal scopes within the block.

Data is asynchronously replicated to multiple hosts (the
replication level is configurable with a default of 3). The
replication policy for data within a spatiotemporal subspace

0 50 100 150 200 250 300 350 400
Geohash Index

15

20

25

30

35

40

45

50

Ho
st

 C
ou

nt

64MB 128MB 256MB

Figure 5: Depiction of the number of hosts that each unique
geohash is present on after 1TB of data is inserted in a 50
node Atlas cluster. Highlights the effectiveness of Atlas’ data
dispersion policies.

favors hosts that have stored similar data. This process is
assisted by the Atlas namenode, which contains a spatiotem-
poral index over the data (as discussed further in Section 2.3).
Thus, the initial data write is processed on a pseudo-random
host, and replicas are written to hosts containing data from
a similar spatiotemporal extant.

Atlas’ data distribution policy results in data for each
spatiotemporal scope that is thinly distributed over the clus-
ter hosts, where replicas are concentrated on a small subset
of hosts. This provides the ability to access spatiotemporal
subsets with data dispersion and/or locality principles. This
facilitates scheduling analytics tasks with host data local-
ity, leveraging data distributions that are aligned with the
particular task.

Micro-Benchmark Profiling Load Balancing of Stor-
age: In Figure 4 we profile data distribution across Atlas
hosts. For this experiment we load 150TB of data into the
cluster using a 128MB block size. Each bar on the x-axis
corresponds to a datanode and the y-axis displays the cu-
mulative data storage size at that particular host. Overall,
the experiment highlights Atlas’ ability to load-balance data
storage while preserving the trade-off between data dispersion
and locality for individual spatiotemporal scopes, comparing
and contrasting different regions and/or durations.

Micro-Benchmark Profiling Geohash Dispersion:
Figure 5 highlights the effectiveness of Atlas’ thin geohash
distributed over cluster hosts. For this experiment we loaded
1TB of data into a cluster of 50 machines (1 namenode and
49 datanodes). We identified the collection of unique indexed
geohashes, sorted the number of hosts each geohash was dis-
tributed over, and plotted the results across the x-axis. We
performed this experiment for block sizes of 64MB, 128MB,
and 256MB. We see that smaller block sizes provide a wider
distribution, where each unique geohash is distributed over
more hosts. However, even geohashes in the 88th percentile
for 256MB blocks are dispersed across 35 hosts, enabling
efficient parallel processing for the particular geohash.

UCC ’19, December 2–5, 2019, Auckland, New Zealand Daniel Rammer, Sangmi Lee Pallickara, and Shrideep Pallickara

Figure 6: Atlas’ namenode architecture and maintenance of
spatiotemporal indices. The Atlas spatial index uses a radix
tree over geohashes and the temporal index is maintained as
a B+-Tree with block timestamps.

2.3 Support for Effective Reduction
Operations [RQ-1]

Data reduction operations are important for spatiotemporal
analytics to identify and retrieve subsets of the dataspace.
This is a primary operation for spatiotemporal analytics tasks,
which often evaluate over a particular spatial and temporal
range.

To provide a platform for efficient spatiotemporal analytics
Atlas maintains an index over data blocks, enabling fast iden-
tification of spatiotemporal data subsets. Our methodology
includes support for processing index updates efficiently, and
enables for robust, efficient query operations. This is impor-
tant because inefficiencies in index construction may halt
subsequent analytics. We have also incorporated a robust
collection of operations that increase the utility of indices
while ensuring efficient query evaluation that is paramount
to data retrieval throughput and latency.

Atlas provides efficient indexing by storing a collection of
data structures at the namenode to facilitate both spatial
and temporal queries. Index metadata is computed at the
datanodes, as reported in Section 2.1, and relayed to the
namenode. An overview of this process is outlined in Figure
6.

The Atlas spatial index is a radix tree over block geohashes.
Each node in the tree contains a list of block ID, offset, and
length tuples representing data belonging to the correspond-
ing nodes geohash. Queries over the spatial index return a
superset of requested data to ensure complete coverage. For
example, a data query for the geohash ”8bce” will return
data that is indexed as ”8b”, because the later may contain
data bounded by the former. The use of this structure en-
sures simple identification of dataspace subsets satisfying the
geohash predicate.

Table 1: Spatial and temporal filtering operands alongside
units that may be embedded within Atlas’ HDFS-compliant
request URLs.

Filter Type (Unit) Operand

Spatial (Geohash)
Equality (=)

Non-Equality (!=)

Less Than (<)
Temporal Less Than or Equal (<=)

(Timestamp) Greater Than (>)
Greater Than or Equal (>=)

A temporal index is maintained using a B+-Tree with start
and end timestamp ranges for each block. B+-Trees are self-
balancing, space-efficient data structures that are optimized
for efficient range queries. This allows Atlas to quickly identify
blocks that contain data for a specific temporal range.

2.4 Integration with Analytics Tools [RQ-1,

RQ-3]

There is a rich ecosystem of analytical engines that support
efficient, distributed analytics. Interfacing with these is para-
mount for integrating Atlas into existing workflows. The
HDFS file system interface is a mature, well-defined specifi-
cation that is leveraged by several analytical engines such as
Hadoop, Spark, TensorFlow, Flink, etc. for hosting datasets
(inputs) or writing results (outputs).

As part of this study, we have incorporated HDFS compli-
ance into Atlas. Atlas incorporates communication protocols,
message exchanges, and discovery operations that are re-
quired (and supported) by canonical HDFS. This allows
seamless interfacing with analytics tools. To provide this
spatiotemporal support within the bounds of HDFS protocol
we have implemented three novel extensions; (1) Extension of
HDFS’ storage policy framework, (2) embedding spatiotem-
poral queries with HDFS URLs, and (3) extending the block
ID to encode spatial filters.

Canonical HDFS enables each file and directory to be
tagged with a storage policy. This tag provides system hints
as to where data should be available within the memory
hierarchy, for example: disk, RAMdisk, RAM, etc. Atlas
extends this tag to include the data format for that particular
directory. Specifically, it explains where to find that spatial
and temporal attributes within each observation. This allows
Atlas to support a variety of file formats including CSV,
WKT/WKB, NetCDF, and HDF5.

Atlas file URLs may contain an embedded query, similar
to the HTTP protocol, which can include spatial (geohash)
and / or temporal (numeric) filtering criteria. Queries may
be applied to directories, returning blocks from children
that satisfy the criteria, or files. An example of a URL with
an embedded query is ”hdfs://noaa-imputed/data0/lattice-
126.csv+geohash=8bc×tamp>1419897600”. In this ex-
ample we are requesting the file ”/noaa-imputed/data0/lattice-
126.csv” and filtering geohash equal to ”8bc” and timestamp
greater than ”1419897600”. Spatial and temporal filtering

ATLAS: A Distributed File System for Spatiotemporal Data UCC ’19, December 2–5, 2019, Auckland, New Zealand

Figure 7: A sample HDFS block ID broken down according to the Atlas spatial encoding scheme. A request for the block ID
reads data from the specified block for the 1st, 3rd, and 6th geohashes.

operands that are supported by Atlas are presented in Table
1. Evaluation of queries is performed at the namenode in the
“getBlockLocations” RPC call, transparently returning all
block IDs (and metadata) that satisfy the query.

We also extended the HDFS block ID to encode spatial
scopes. This is necessary to provide efficient data retrieval,
allowing sequential disk reads to process any spatial subset of
a block. For example, a query which requests non-consecutive
spatial partitions of a stripped set is able to be performed in a
single request with our solution. Without it, a request for each
spatial partition is necessary, incurring excessive overheads
due to disk head movements. HDFS block ID’s are 64-bit
unique values. In Table 2 we have outlined our partitioning
of these bits to encode spatial scopes. Our encoding scheme
relies on the fact that Atlas can include 16 unique geohashes
within each block (hence using a base 16 variant of the
geohash algorithm). Figure 7 provides an example geohash
and the decoded spatial scope.

Introduction of these novel extensions into the HDFS pro-
tocol enables Atlas to provide efficient, robust spatiotemporal
query support. Additionally, they allow seamless integration
of Atlas into existing workflows.

3 EMPIRICAL BENCHMARKS AND
EVALUATION

Here, we report on systems benchmarks that we have designed
to profile several aspects of our methodology to assess:

∙ Efficient identification and retrieval of spatiotemporal sub-
spaces. The Atlas architecture is designed to provide ef-
ficient filtering over the underlying datasets, a common
requirement for many spatiotemporal analytic tasks. [RQ-
1, RQ-3, RQ-4]

∙ Reductions in disk and network I/O during spatiotempo-
ral analytics. Distributed analytics frameworks are often
deployed in shared environments that are subject to con-
tention and reduced throughputs. Effective utilization of
system resources facilitates overall performance improve-
ments, where disk and network I/O are subject to con-
tention. [RQ-1, RQ-3, RQ-4]

3.1 Experimental Setup

Atlas systems benchmarks were performed on a cluster of 50
HP-DL60-G9-E5-2620v4 machines running Fedora 29. These
are equipped with an Intel Xeon E5-2620 (8 cores, 16 hyper-
threads, 2.10GHz) and 64GB RAM. The cluster is connected
with a 1Gb/s ethernet switch. Storage layer applications (i.e.,

Table 2: The bit sequence index layout of Atlas’ HDFS block
ID extensions to support embedding of spatial queries.

Bit Indices Description Key Value

1 Index Flag
0 Non-indexed
1 Indexed

2 - 27 Unique ID - -

28 - 31 Geohash ID code
0 - 8 Include 0 - 8
9 - 15 Exclude 1 - 7

32 - 64 4 bit Geohash ID’s - -

Atlas and HDFS v2.8.5) use 1 machine for the namenode
and the other 49 for datanodes. Similarly, our Apache Spark
v2.4.3 deployment uses 1 machine for the Master and the
other 49 as Workers.

We have performed benchmarks over two real-world datasets
to highlight performance and applicability in diverse scenarios.
The NOAA (National Oceanic and Atmospheric Administra-
tion) dataset contains data reported by 1.3 million globally
dispersed vantage points every 6 hours. It contains point
spatiotemporal data, meaning each observation is tagged
with a latitude, longitude, and timestamp. A few examples of
the 56 uniformly reported features are surface temperature,
wind speed, humidity, pressure, and precipitation. We have
chosen to analyze 2014 data, reporting at just under 1TB.
The EPA (US Environmental Protection Agency) dataset
contains point data reported by 275 million US-based van-
tage points every 4 hours. This dataset reports at just under
200GB and contains features encompassing airborne partic-
ulates, meteorological information, and toxics (such as lead
and ozone precursors).

3.2 Identification and Retrieval of
Spatiotemporal Subspaces [RQ-1, RQ-3,

RQ-4]

In this experiment, we performed spatiotemporal filtering
operations over the EPA dataset using Apache Spark. We pro-
vide analyses over a variety of spatiotemporal scopes. Spatial
filtering is performed using geohashes and the corresponding
latitude and longitude boundaries, temporal filtering evalu-
ates over the bounding timestamps, and spatiotemporal oper-
ations leverage a combination of the aforementioned criteria.
Within Spark, we read the base dataset into a DataFrame,
filter based on the necessary criteria, and perform a count op-
eration over the results. Counting the resulting observations

UCC ’19, December 2–5, 2019, Auckland, New Zealand Daniel Rammer, Sangmi Lee Pallickara, and Shrideep Pallickara

Table 3: Performance improvements comparing Atlas with canonical HDFS for spatiotemporal subspace identification and re-
trieval. Filtering duration is improved by up to 7.9x, 2.8x, and 5.2x for spatial, temporal, and spatiotemporal criteria respectively.
Disk and network I/O are consistently reduced by 3 orders of magnitude.

Duration Disk I/O Network I/O
Filter Type (Unit) Filter

Atlas HDFS Atlas HDFS Atlas HDFS

Spatial (Geohash)
8e80 9.97s 1:17.3s 126.4MB 193.9GB 320MB 188.9GB
a76b 10.9s 1:15.3s 130.7MB 194.7GB 316.4MB 188.2GB
b2296 10.9s 1:26.5s 130.7MB 195.3GB 317.0MB 188.5GB

Temporal (Duration)
2 Weeks 28.6s 1:20.7s 15.8GB 195.0GB 17.4GB 186.4GB
1 Week 28.5s 1:11.9s 15.7GB 195.0GB 17.2GB 188.6GB
1 Day 29.6s 1:17.4s 17.8GB 194.9GB 19.2GB 188.7GB

Spatiotemporal (Geohash - Duration)
8bce - 2 Weeks 15.9ss 1:23.6s 344MB 195.2GB 582.4MB 187.6GB
9b - 1 Week 18.9s 1:14.2s 568.9MB 193.8GB 819.6MB 187.0GB
a53 - 1 Day 19.2s 1:21.3s 1.2GB 195.8GB 1.5GB 188.0GB

8bce
2 Weeks

9b
1 Week

a53
1 Day

0

100

200

300

400

500

Du
ra

tio
n

(S
ec

on
ds

)

(a) Duration of spatiotemporal histogram
analytics. Atlas reduces by up to 4x com-
pared to canonical HDFS.

8bce
2 Weeks

9b
1 Week

a53
1 Day

0

200

400

600

800

1000

Da
ta

 S
ize

 (G
B)

Atlas HDFS

(b) Disk I/O is consistently reduced by 3
orders of magnitude.

8bce
2 Weeks

9b
1 Week

a53
1 Day

0

200

400

600

800

1000

Da
ta

 S
ize

 (G
B)

(c) Network I/O is measurable in single
GBs instead of TBs after a 3 order of mag-
nitude reduction.

Figure 8: Duration, disk I/O, and network I/O incurred during histogram evaluation over a single dataset feature comparing
Atlas with HDFS.

is necessary because Spark’s lazy evaluation of DataFrames,
where operations are only performed when necessary.

In Table 3 we present the results of our filtering experi-
ments; reporting durations, disk I/O, and network I/O. We
see that Atlas consistently outperforms canonical HDFS. Fil-
tering duration is reduced by up to 7.9x, 2.8x, and 5.2x for
spatial, temporal, and spatiotemporal filtering criteria re-
spectively. Both disk I/O and network I/O are reduced by
up to 3 orders of magnitude. The variance in duration
between spatial, temporal, and spatiotemporal filtering is
caused by the amount of data that needs to be read from
disk. We observed that Atlas temporal filtering provides an
order of magnitude better disk I/O performance (for similar
filtered data sizes). This is because Atlas’ spatial indices
provide finer querying granularity over blocks.

These improvements can be attributed to (1) spatiotem-
poral indices within Atlas providing targeted data access
and (2) support for sequential disk reads that circumvent the
overheads from disk head movements. Furthermore, HDFS-
compliance allows Atlas to seamlessly interface with the
Apache Spark framework, facilitating adoption into existing
workflows.

3.3 Spatiotemporal Analytics [RQ-1, RQ-3,

RQ-4]

To highlight the effectiveness of spatiotemporal analytics
using Atlas we have chosen to construct a histogram over
a single feature within a spatiotemporal subspace. The his-
togram algorithm is a common analytics operation to estimate
the distribution of feature values. We experimented using the
NOAA dataset, specifically targeting the surface tempera-
ture feature and evaluating under a variety of spatiotemporal
scopes, presenting geographically diverse regions with varying
durations.

In Figure 8 we present our results comparing Atlas with
canonical HDFS. Specifically Figures 8a, 8b, and 8c provide
the analytics duration, disk I/O, and network I/O incurred
during evaluation respectively. We see that Atlas facili-
tates a 4x reduction in duration when compared with
canonical HDFS. Additionally, disk I/O and network I/O
are continually reduced by 3 orders of magnitude, making
results measurable in single GBs instead of TBs.

These reductions are directly attributable to Atlas’ spa-
tiotemporal optimizations in identifying spatiotemporal sub-
spaces and providing efficient data access patterns. Addition-
ally, the analytics task benefits from Atlas’ data distribution

ATLAS: A Distributed File System for Spatiotemporal Data UCC ’19, December 2–5, 2019, Auckland, New Zealand

policies, facilitating parallel processing enabled by the effec-
tive dispersion of data throughout the cluster.

4 RELATED WORK

A variety of spatial indexing data structures have been pro-
posed. Quadtrees [8], R-tree’s [12], and many R-tree variants
[4, 14, 22] build trees where each node is responsible for a
spatial subset of its parent. Leaf nodes contain buckets of
data and when the bucket’s reach capacity the node is split,
adding a layer to the tree. Vornoi diagrams [3] partition a
plane into multiple regions (Voronoi cells) based on distances
to predefined points (seeds). Voronoi diagrams provide opti-
mizations for many spatial operations. All of these algorithms
focus on indexing spatial data at a fine granularity. Atlas’
approach of constructing a radix tree over observational geo-
hashes produces a more concise index, while providing the
finest granularity over queries allowed within the system.

Efforts to distribute spatial indices include the P2P R-
tree [19], distributed quad-tree [25], and spatial P2P [15].
These algorithms provide distributed spatial indexing, but
lack optimizations in data distributed policies and data access
patterns. Additionally, interfacing with analytics tools is in-
creasingly difficult; often requiring significant implementation.
Atlas facilitates efficient spatiotemporal access by provide
dispersed and collocated data distribution and optimizes data
access patterns by rearranging data along spatiotemporal
bounds.

Scientific communities have leveraged P2P Grids [9, 10]
and problem-specific storage solutions [24]; our approach is
broadly applicable to any spatiotemporal datasets that need
to be processed concurrently.

The Hadoop Distributed File System [23] was designed to
combat the inefficiencies of the Google File System [11]. It
partitions files into many blocks and distributes and repli-
cates them among a set of datanodes. This facilitates efficient
distributed analytics and provides fault-tolerance. HBase [27]
and Hive [26] provide a relational interface and data ware-
housing solution over Hadoop respectively. These simplify
interfacing and integration of Hadoop. While these solutions
are generally performant, they lack optimization for specific
workloads, particularly spatiotemporal analytics. Atlas lever-
ages algorithms designed within these frameworks for efficient
distributed analytics and extends them for spatiotemporal
support, specifically targeting efficient data distribution and
storage for spatiotemporal subspace identification and re-
trieval.

A number of projects have been introduced targeting spa-
tial functionality within the MapReduce framework. Individ-
ual spatial functions have been proposed addressing range
queries [18], K-nearest neighbors [31], and all-nearest neigh-
bors [28]. Join operations, focused on spatial parameters and
K-nearest neighbors, were evaluated in [32], [29], and [17].
Full spatial functionality suites have been proposed using
Voronoi-based spatial MapReduce operations [2], distributed
spatial indices [5], and at the Hadoop language interface
layer in Pigeon [6], an extension of Hadoop’s PigLatin [21]

language. These efforts provide efficient implementations of
spatial functionality using MapReduce but lack optimiza-
tions in the data storage layer, alternatively targeting the
analysis phase. Atlas provides spatiotemporal performance
improvements by targeting inefficiencies in the storage layer,
providing a new platform for optimized spatiotemporal func-
tionality.

Many extensions to the Hadoop framework aim to integrate
native spatial support. Parallel-secondo [16] is a parallel spa-
tial DBMS using Hadoop for spatial support in the analytics
layer. VegaGiStore [33], HadoopGIS [1], and SpatialHadoop
[7] are extensions to the Hadoop source-code to support
spatial indexing and analytics within the framework. Exten-
sions over H-Base include MD-Hbase [20], H-Grid [13], and
HBase-Spatial [30]. These systems lack support to tailor data
placement based on spatiotemporal similarities. Rather, they
maintain two-tiered spatial indices over the data. Atlas facil-
itates efficient analytics by optimizing the data distribution
policies and data access patterns, producing sequential disk
reads.

5 CONCLUSIONS AND FUTURE
WORK

This study describes our methodology for enabling native
spatiotemporal support within a distributed file system. Atlas
targets every layer of processing to optimize for identifica-
tion and retrieval of spatiotemporal subspaces. Datasets are
chunked and rearranged to align with spatiotemporal data
access patterns, enabling sequential reads on operations over
a specific spatiotemporal range. We manage the competing
pulls of dispersion and locality during data distribution to
facilitate effective support over a variety of analytics tasks.
Our integration of HDFS’ communication protocols allows
seamless integration of Atlas with several analytics engines,
while allowing for adoption into existing workflows.

∙ [RQ-1]: We account specifically for spatiotemporal data
characteristics within every layer of our solution. Atlas
partitions and rearranges data to enable spatiotemporal
aligned disk accesses. Balancing data distribution using
dispersion and locality over the cluster facilitates effective
spatiotemporal analytics for myriad scenarios, and the com-
bination of spatiotemporal indices and HDFS extensions
allows for efficient identification and retrieval of spatiotem-
poral subspaces. Our benchmarks in Section 3 demonstrate
the effectiveness of our solution.

∙ [RQ-2]: Effectively supporting data segmentation involves
partitioning the dataspace into many smaller chunks. In
Atlas, this is performed during data insertion. Data seg-
mentation is a core principle for integrating spatiotemporal
support into Atlas.

∙ [RQ-3]: Interoperating with analytical engines is achieved
by natively supporting canonical-HDFS’ communication
protocols. Data insertion and retrieval within Atlas may be
performed using the HDFS protocol. We have implemented
two specific extensions, namely URL-embedded queries
and block ID spatial encoding. Ultimately, this enables

UCC ’19, December 2–5, 2019, Auckland, New Zealand Daniel Rammer, Sangmi Lee Pallickara, and Shrideep Pallickara

seamless integration with several analytical engines, while
promoting adoption into existing workflows.

∙ [RQ-4]: Atlas uses a spatiotemporally aligned data dis-
tribution algorithm to manage the competing pulls of dis-
persion and collocation. Atlas places data chunk replicas
throughout the cluster enabling a variety of spatiotem-
poral access. As a result, data distribution for a specific
spatiotemporal subspace provides both a thin layer, where
data is present on many hosts, and a concentrated group,
where data is united over a few hosts. This approach mini-
mizes network I/O (in the form of data movements) while
facilitating efficient processing of the dataspace for diverse
analytics.

As part of future work, we will explore optimizations of
specialized spatiotemporal algorithms within Atlas, including
k-nearest neighbor queries and a variety of spatiotempo-
ral dataset joins. Another topic for investigation is support
for data imputations, where we estimate portions of a spa-
tiotemporal scope by leveraging spatiotemporally proximate
relationships.

ACKNOWLEDGMENTS

This research was supported by grants the US National Sci-
ence Foundation [OAC-1931363, ACI-1553685], the US De-
partment of Homeland Security [D15PC00279], the Advanced
Research Projects Agency- Energy(ARPA-E), and a Cochran
Family Professorship.

REFERENCES
[1] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz.

2013. Hadoop gis: a high performance spatial data warehousing
system over mapreduce. Proceedings of the VLDB Endowment
6, 11 (2013), 1009–1020.

[2] A. Akdogan, U. Demiryurek, F. Banaei-Kashani, and C. Shahabi.
2010. Voronoi-based geospatial query processing with mapre-
duce. In 2010 IEEE Second International Conference on Cloud
Computing Technology and Science. IEEE, 9–16.

[3] F. Aurenhammer. 1991. Voronoi diagrams—a survey of a fun-
damental geometric data structure. ACM Computing Surveys
(CSUR) 23, 3 (1991), 345–405.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. 1990.
The R*-tree: an efficient and robust access method for points and
rectangles. In Acm Sigmod Record, Vol. 19. Acm, 322–331.

[5] A. Eldawy, Y. Li, M. F. Mokbel, and R. Janardan. 2013.
CG Hadoop: computational geometry in MapReduce. In Proceed-
ings of the 21st ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems. ACM, 294–303.

[6] A. Eldawy and M. F. Mokbel. 2014. Pigeon: A spatial mapreduce
language. In 2014 IEEE 30th International Conference on Data
Engineering. IEEE, 1242–1245.

[7] A. Eldawy and M. F. Mokbel. 2015. Spatialhadoop: A mapreduce
framework for spatial data. In 2015 IEEE 31st international
conference on Data Engineering. IEEE, 1352–1363.

[8] R. A. Finkel and J. L. Bentley. 1974. Quad trees a data structure
for retrieval on composite keys. Acta informatica 4, 1 (1974),
1–9.

[9] G. Fox, S. Lim, S. Pallickara, and M. Pierce. 2005. Message-based
cellular peer-to-peer grids: foundations for secure federation and
autonomic services. Future Generation Computer Systems 21, 3
(2005), 401–415.

[10] G. Fox, S. Pallickara, and X. Rao. 2005. Towards enabling peer-
to-peer Grids. Concurrency and Computation: Practice and
Experience 17, 7-8 (2005), 1109–1131.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung. 2003. The Google file
system. (2003).

[12] A. Guttman. 1984. R-trees: A dynamic index structure for
spatial searching. Vol. 14. ACM.

[13] D. Han and E. Stroulia. 2013. Hgrid: A data model for large
geospatial data sets in hbase. In 2013 IEEE Sixth International
Conference on Cloud Computing. IEEE, 910–917.

[14] I. Kamel and C. Faloutsos. 1993. Hilbert R-tree: An improved
R-tree using fractals. Technical Report.

[15] V. Kantere, S. Skiadopoulos, and T. Sellis. 2008. Storing and
indexing spatial data in p2p systems. IEEE Transactions on
Knowledge and Data Engineering 21, 2 (2008), 287–300.

[16] J. Lu and R. H. Güting. 2012. Parallel secondo: boosting database
engines with hadoop. In 2012 IEEE 18th International Confer-
ence on Parallel and Distributed Systems. IEEE, 738–743.

[17] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. 2012. Efficient processing
of k nearest neighbor joins using mapreduce. Proceedings of the
VLDB Endowment 5, 10 (2012), 1016–1027.

[18] Q. Ma, B. Yang, W. Qian, and A. Zhou. 2009. Query processing
of massive trajectory data based on mapreduce. In Proceedings
of the first international workshop on Cloud data management.
ACM, 9–16.

[19] A. Mondal, Y. Lifu, and M. Kitsuregawa. 2004. P2pr-tree: An r-
tree-based spatial index for peer-to-peer environments. In Interna-
tional Conference on Extending Database Technology. Springer,
516–525.

[20] S. Nishimura, S. Das, D. Agrawal, and A. El Abbadi. 2011. Md-
hbase: A scalable multi-dimensional data infrastructure for loca-
tion aware services. In 2011 IEEE 12th International Conference
on Mobile Data Management, Vol. 1. IEEE, 7–16.

[21] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
2008. Pig latin: a not-so-foreign language for data processing. In
Proceedings of the 2008 ACM SIGMOD international conference
on Management of data. ACM, 1099–1110.

[22] T. Sellis, N. Roussopoulos, and C. Faloutsos. 1987. The R+-Tree:
A Dynamic Index for Multi-Dimensional Objects. Technical
Report.

[23] K. Shvachko, H. Kuang, S. Radia, R. Chansler, et al. 2010. The
hadoop distributed file system.. In MSST, Vol. 10. 1–10.

[24] Y. L. Simmhan, S. L. Pallickara, N. N. Vijayakumar, and B. Plale.
2007. Data management in dynamic environment-driven compu-
tational science. In Grid-based problem solving environments.
Springer, 317–333.

[25] E. Tanin, A. Harwood, and H. Samet. 2007. Using a distributed
quadtree index in peer-to-peer networks. The VLDB Jour-
nal—The International Journal on Very Large Data Bases 16,
2 (2007), 165–178.

[26] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. 2009. Hive: a warehousing
solution over a map-reduce framework. Proceedings of the VLDB
Endowment 2, 2 (2009), 1626–1629.

[27] M. N. Vora. 2011. Hadoop-HBase for large-scale data. In Pro-
ceedings of 2011 International Conference on Computer Science
and Network Technology, Vol. 1. IEEE, 601–605.

[28] K. Wang, J. Han, B. Tu, J. Dai, W. Zhou, and X. Song. 2010.
Accelerating spatial data processing with mapreduce. In 2010
IEEE 16th International Conference on Parallel and Distributed
Systems. IEEE, 229–236.

[29] C. Zhang, F. Li, and J. Jestes. 2012. Efficient parallel kNN
joins for large data in MapReduce. In Proceedings of the 15th
international conference on extending database technology. ACM,
38–49.

[30] N. Zhang, G. Zheng, H. Chen, J. Chen, and X. Chen. 2014.
Hbasespatial: A scalable spatial data storage based on hbase. In
2014 IEEE 13th international conference on trust, security and
privacy in computing and communications. IEEE, 644–651.

[31] S. Zhang, J. Han, Z. Liu, K. Wang, and S. Feng. 2009. Spatial
queries evaluation with mapreduce. In 2009 Eighth International
Conference on Grid and Cooperative Computing. IEEE, 287–
292.

[32] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. 2009. Sjmr: Paral-
lelizing spatial join with mapreduce on clusters. In 2009 IEEE
International Conference on Cluster Computing and Workshops.
IEEE, 1–8.

[33] Y. Zhong, J. Han, T. Zhang, Z. Li, J. Fang, and G. Chen. 2012.
Towards parallel spatial query processing for big spatial data. In
2012 IEEE 26th International Parallel and Distributed Process-
ing Symposium Workshops & PhD Forum. IEEE, 2085–2094.

	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Research Questions
	1.3 Approach Summary
	1.4 Paper Contributions

	2 Methodology
	2.1 Counteracting Inefficient Spatiotemporal Data Access Patterns [RQ-1, RQ-2]
	2.2 Reconciling the Competing Pulls of Dispersion and Locality [RQ-1, RQ-4]
	2.3 Support for Effective Reduction Operations [RQ-1]
	2.4 Integration with Analytics Tools [RQ-1, RQ-3]

	3 Empirical Benchmarks and Evaluation
	3.1 Experimental Setup
	3.2 Identification and Retrieval of Spatiotemporal Subspaces [RQ-1, RQ-3, RQ-4]
	3.3 Spatiotemporal Analytics [RQ-1, RQ-3, RQ-4]

	4 Related Work
	5 Conclusions and Future Work
	Acknowledgments
	References

