
1

Enabling Fast Exploratory Analyses Over Voluminous
Spatiotemporal Data Using Analytical Engines

Daniel Rammer, Thilina Buddhika, Matthew Malensek, Shrideep Pallickara, Sangmi Lee Pallickara, Members, IEEE,

Abstract—Fueled by the proliferation of IoT devices and increased adoption of sensing environments the collection of spatiotemporal
data has exploded in recent years. Disk based storage systems provide reliable archives but are far too slow for efficient analytics.
Furthermore, spatiotemporal datasets quickly exceed the memory capacity of cluster environments. Current solutions focused on
in-memory analytics suffer from memory contention and unnecessary network I/O, failing to provide a suitable platform for iterative,
exploratory analytics in shared environments. In this work we propose Anamnesis, the first in-memory, sketch aligned, HDFS compliant
storage system. Data sketching algorithms reduce dataset sizes by summarizing feature values and inter-feature relationships.
Anamnesis leverages data sketches to alleviate memory contention and vastly reduce network I/O during analytics. Upon request, we
generate accurate full-resolution datasets with negligible resource and time costs. Datasets are available using a fully HDFS compliant
interface allowing Anamnesis to achieve unprecedented compatibility with popular analytics engines. This facilitates adoption into
existing workflows by serving as a ”drop-in” replacement for canonical HDFS. We evaluate the system using 2 spatiotemporal datasets,
a variety of popular analytics engines, and real-world analytical operations.

Index Terms—data sketches, spatiotemporal data, big data, distributed analytics

F

1 INTRODUCTION

S PATIOTEMPORAL data occur in domains exploring natural
phenomena, such as atmospheric science, environmental

and ecological monitoring, geosciences, and epidemiology, and
in commercial and social networking settings.

Spatiotemporal data volumes have grown exponentially
over the past decade alongside methodological innovations in
data organization, data fitting algorithms, and analytics. New
equipment characteristics have exacerbated this growth. In par-
ticular, this includes improved hardware capabilities of in situ
and remote sensing equipment that report measurements with
increased precision, improved resolution, and at higher rates.
Falling equipment costs also contribute to the proliferation of
these devices.

These data offer unprecedented opportunity for exploration
and gleaning insights. While efforts have been made to or-
ganize and perform timely analytics on voluminous datasets,
effective data analysis is stymied by data volumes, disk I/O,
and network movement costs.

This study aims to support fast analytics over voluminous,
spatiotemporal data.

1.1 Challenges
Challenges in enabling exploratory analytics over voluminous
spatiotemporal data stem from data volumes, systems aspects,
and the nature of the analytic process.
• Data volumes: The datasets we consider are voluminous,

encompassing a very large number of multidimensional ob-
servations.

• Sluggish I/O subsystem and the memory hierarchy: The speed
differential of the memory hierarchy compounds these chal-
lenges with disk I/O being several orders of magnitude
slower than memory. Any data item that is being processed
must be memory resident; datasets, or portions thereof, need

• D. Rammer, T. Buddhika, S. Pallickara, and S.L. Pallickara are with the
Department of Computer Science, Colorado State University, Fort Collins,
CO - 80523. M. Malensek is with the Department of Computer Science at
the University of San Francisco, San Francisco, CA - 94117.

to be memory resident prior to performing analytic opera-
tions. Ultimately, analytic operations are dominated by time
spent performing I/O.

• Choice of analytical engines: Users prefer to have a choice in
their use of analytical engines for data analysis. However,
this choice can be difficult to achieve and requires the user to
manage several aspects of the data preparation tasks.

• Performance hotspots: There may be severe imbalances in how
the data are dispersed over a collection of machines. Data
movements in these situations can be prohibitive, entailing
both disk I/O and network I/O. If data movements to
rebalance the data prior to analysis are not performed, the
subsequent in-place analysis leads to performance hotspots
on machines that hold disproportionate portions of the data
space.

• Data movement costs: During data staging it is impossible to
know the data access patterns triggered by future analytic
tasks. For example, data may be staged on disks with the
objective of preserving geographical proximity, but the ana-
lytics may target temporal analyses across multiple geospatial
scopes — such an analytics job may trigger significant data
movements.

• Data formats: The analysis — esp. legacy code — may expect
the data to be in a particular format; this may be different
from the format in which the data is stored.

• Iterative nature of the analytic process: The analytics process
involves identifying portions of the data that are of interest.
Once results are obtained the scientist may wish to augment
either the analytic operations or further refine the datasets.
Data refinements involve updating the sets of features and
bounds/thresholds on values that particular features might
take. Analytic operations may involve multiple, repeated
sweeps of the data (or the portions thereof) — however the
data volumes preclude how often these can be performed, if
at all.



2

1.2 Research Questions

The following research questions guide our investigations.
RQ-1: How can we cope with the speed differential of the memory
hierarchy? In particular, we must reduce the amount of disk
I/O that needs to be performed during analytic operations.

RQ-2: How can we minimize data movement costs during analytics
over spatiotemporal data? Since analytic jobs are launched in
shared clusters, inefficiencies in network utilization (including
contention) affect other users and applications utilizing those
clusters.

RQ-3: How can we support interoperation with diverse analytical
engines? Analytical engines vary in the complexity and variety
of operations that they support

RQ-4: How can we ensure fast completion times to facilitate the iter-
ative analytics process? Timely completion of analytic operations
fosters experimentation that is key to deriving insights.

1.3 Approach Summary

The overarching theme in our methodology is to reduce:
memory footprints and contention, data movements, and the
amount of disk I/O that needs to be performed. These themes
are complemented with a focus on managing the competing
pulls of data locality and load balancing during analyses.

In particular, our methodology leverages a distributed,
spatiotemporal sketching algorithm (Synopsis [1]) to generate
compact, memory-resident sketches of the data space. We use
the sketch as a surrogate for the full-resolution data. The sketch
is memory-resident and eliminates the need to the write full-
resolution, raw observations to disk.

A key step in the analysis process is identifying data that
must be analyzed. The in-memory sketch is organized as a
prefix tree that straddles multiple machines. Query evaluations
over the distributed data sketch result in identification of por-
tions of the data space that are of interest. Tree paths from
different portions of the distributed sketch are agglomerated
in our Slice data structure. Slices encapsulate information as
a traversable forest of trees; each tree path represents a spa-
tiotemporal scope for which query constraints were satisfied.
We allow users to reorient the trees comprising the forest. These
reorientations are aligned with the nature of the analyses being
performed. For example, the root node in these trees would be
the feature designated as the primary feature for analysis.

Users interact with Slices via two classes of operators:
instrumentation and materialization. Instrumentation operators
manage the composition of the dataset. Instrumentation op-
erators can be pairwise or standalone and include set oper-
ations, augmenting with auxiliary datasets, and incremental
refinements. Set operations that we support include union,
intersection, distinct, and subtraction across two or more Slices.
Slices can be augmented with auxiliary datasets to supplement
the analyses; these result in the addition of new features. A Slice
can be incrementally refined to adjust spatiotemporal scopes
and constrain the number and type of features that are of
interest.

Materialization operators create exploratory datasets that
are suitable for analysis using diverse analytical engines. The
system manifestation/distribution of the exploratory dataset
is aligned with the expected processing with the goal of re-
ducing data movements and the accompanying contention and
reduced performance. Materialization results in the creation of
an exploratory dataset that comprises data items with values in
the units, scale, and formats that the analyses task expects it to

be in. A materialized Slice is an exploratory dataset. The ma-
terialization class of operators is responsible for ensuring that
the data is ready for analyses by diverse analytical engines. In
particular, materialization ensures the representativeness of the
data space and alleviates the I/O-induced inefficiencies when
processing using diverse analytical engines. Our methodology
manages the competing pulls of load balancing, data locality,
and ensuring fast completion times.

To support interoperation with diverse analytical engines,
we materialized exploratory datasets in HDFS (Hadoop Dis-
tributed File System [2]). Several analytical engines, such as
Hadoop MapReduce, Spark, TensorFlow, Mahout, etc., support
integration with HDFS and use it as a primary source for access-
ing input data. HDFS, which is data-format-neutral and suited
for semi/unstructured data, provides an excellent avenue for
us to interoperate with analytical engines. Most importantly,
users can reuse or modify legacy code that they developed in
their preferred analytical engines.

To further enhance the integration with analytical engines
we have designed a memory-resident, HDFS-compatible dis-
tributed file system, Anamnesis, from the ground up. Since
Anamnesis is fully HDFS compliant, its interactions with ana-
lytical engines (control-plane traffic) are indistinguishable from
the canonical HDFS but augment it with capabilities aligned
with our needs and eliminate unnecessary functionality that
worsens resource requirements and contention, e.g., replication
and fault recovery. Most importantly our methodology elim-
inates disk I/O when analytical engines access the data as
analytic operations are launched.

1.4 Experimental Datasets
We performed benchmarks using two real-world, voluminous
datasets. The first contains weather related observations re-
ported by the National Oceanic and Atmospheric Administra-
tion (NOAA) and the second is an air quality dataset collected
by the US Environmental Protection Agency (EPA). In both
datasets we see that consecutively reported observations from
a single collection point tend to have relatively small feature
changes often noted in time series datasets. However, observa-
tions reported between collection points often display greater
variability.

The NOAA weather dataset reports observations from 1.3
million globally dispersed collection points. There are 56 float-
ing point decimal features uniformly reported every 6 hours
by each collection point. A few example features include: sur-
face temperature, surface wind gust speed, relative humidity,
atmospheric precipitable water, and tropopause pressure.

The EPA air quality dataset reports from 275 million U.S.
based collection points. Observations are reported every 4
hours and include information on certain gases, particulates,
meteorological information, and toxins (including ozone pre-
cursors and lead).

Although our experiments focus on environmental datasets,
our approach is designed to process data from a variety of do-
mains with a few restrictions. Datasets must be observational,
and therefore this work is not applicable to many media ap-
plications, including image and video processing, etc. Datasets
with spatiotemporal attributes are preferred to effectively lever-
age advantages provided by the sketching algorithm. It is also
important to note that datasets may be static or dynamically
reported as the sketch is amendable to incremental additions.

1.5 Paper Contributions
Our methodology supports fast analyses over voluminous,
multidimensional, spatiotemporal datasets. In particular our



3

D

DN

DJ

DNB

DJ9

t2t1

DJB

t2t1Zoom In

Responsible 
Geospatial Area: D - DJ - DN

Responsible Geospatial Area: DN - DNB

Responsible Geospatial Area: DNB

Responsible Geospatial Area: DJ

Sketchlet for Geospatial Area DJ

….
Temporal

Scope

Feature
ScopesStream FlowA

B

C

D
SIFT Trees

Fig. 1: A demonstration of the distributed sketch for region
represented by geohash prefix D. The sketchlets for prefixes
DJ and DN have scaled out due to high data densities. Each
sketchlet maintains a SIFT, a forest of trees, with each tree
responsible for a geospatial subregion.

contributions include:
1) Support for near real-time construction of custom datasets.

This includes support for selection of features, selection of
the primary feature, and augmenting analysis with auxiliary
datasets.

2) Significant reduction in the amount of disk I/O that needs
to be performed during analytic operations. This results in
faster completion times for analytic operations.

3) Support for performing analyses using diverse analytical
engines.

4) Support for fast completion of analytic tasks at high-
throughput.

5) To our knowledge, Anamnesis is the first HDFS implementa-
tion specifically designed for integration with data sketches.

2 SYSTEMS OVERVIEW

Herein we present:
1) An overview of the Synopsis sketch for spatiotemporal data;
2) A description of how the components comprising our frame-

work share available physical resources;
3) An overview of the Slice data structure that is the starting

point for explorations.

2.1 Synopsis Sketch
Synopsis [1] is a distributed sketch constructed over spatiotem-
poral data streams. Data must be observational, and the sketch
is amenable to incremental updates allowing for dynamically
reported datasets. The Synopsis sketch is composed of a num-
ber of sketchlets dispersed over multiple machines, each respon-
sible for a particular geospatial area. Sketchlets are organized as
a prefix tree based on the geohash [3] prefixes corresponding to
the geospatial bounding boxes they are responsible for. Synop-
sis dynamically scales based on the data availability densities
at different geospatial regions in the incoming input streams.
Scale-out operations perform targeted load migration for re-
gions with higher data densities to relieve memory pressure
of the host nodes of the affected sketchlets while preserving
the performance of the distributed sketch. Scale-in operations
merge sketchlets with low data densities into a single sketch
to conserve memory. An example snapshot of the sketch is
depicted in Figure 1.

A sketchlet organizes observations corresponding to its re-
gion as a group of tree-based representations called SIFT (Sum-
marization Involving a Forest of Trees). The edges and vertices
within each SIFT tree maintain interfeature relationships while

leaves maintain online summary statistics for individual fea-
tures and cross-feature covariances using Welford’s method [4].
Each level of a SIFT tree represents either the temporal scope or
a feature. Compaction is achieved by grouping to exploit similar-
ities in values reported within observations instead of storing
the raw feature values. Similar feature values are grouped
together into bins determined using an online kernel density
estimation function. A vertex is created in the SIFT tree for each
bin at the appropriate level. Insertion of a multidimensional
observation creates a path in the SIFT tree (if the path does
not exist) connecting the respective bins for individual feature
values. Statistics maintained at the leaf node of the path are also
updated.

A Synopsis sketch can be queried using different types
of queries, such as relational queries and statistical queries.
Any Synopsis node can accept a query and subsequently will
disseminate the query to the appropriate machines that are
holding the matching sketchlets. Synthetic data generation is
a special type of query that allows users to generate represen-
tative datasets based on the distributions stored in the sketch.

2.2 System Architecture

The system architecture consists of (1) the Synopsis cluster,
(2) Anamnesis cluster, (3) client (driven by the Java API / Scala
shell), and (4) analytics engines.

1) Synopsis Cluster: Synopsis [1] supports memory efficient
data read/write operations. The building block sketchlets
(as described in Section 2.1) sketch full-resolution data.
The system never writes data to disk; it stores sketches in
memory.

2) Anamnesis: This is our in-memory HDFS compliant im-
plementation. The application components, namenodes and
datanodes, are identical to canonical HDFS in their commu-
nication protocols. Therefore, Anamnesis is fully compatible
with any system that supports read / write operations
through HDFS. The main difference with canonical HDFS
is our implementation provides native support for data
sketches and effective memory residency while reducing
contention.

3) Java API / Scala Shell: User interaction with the various
components (Synopsis and Anamnesis) is driven by a Java
API. The compiled JAR may be imported into any Java
compatible application including a dynamic Scala shell. The
API provides support for Slice initialization from a Synopsis
cluster, configuration / manipulation (instrumentation), and
distribution to Anamnesis (materialization).

4) Analytics Engines: The system makes data available in an
HDFS compliant interface, therefore any analytics engine
that supports HDFS may interoperate with our system (e.g.,
Apache Spark, Hadoop, TensorFlow, etc.).

Interaction between system components is performed in a
workflow shown in Figure 2. (1) The client queries the Synopsis
cluster using the Java API / Scala shell, organizing data of inter-
est in the locally maintained Slice data structure. (2) The client
materializes the Slice over the Anamnesis cluster, distributing
data based on proposed analytics. (3) Clients execute analytics
operations using popular distributed analytics engines. (4) The
Anamnesis cluster dynamically generates synthetic data to
serve data requests over an HDFS compliant interface. Each
stage is described in Section 3.



4

HDFS API

Spark Hadoop Flink

Analytic Engines

Anamnesis
Synopsis

Client - Java/Scala API

Datanodes
Namenode

1. Query

2. Materialize the Slice

 3. Launch Analytic Task

4. Data Access

Fig. 2: System architecture displaying interaction of individ-
ual components. Scala shell facilitates Slice initialization from
Synopsis queries, materialization of Slices over Anamnesis, and
execution of analytics tasks using popular distributed analytics
engines.

2.3 Slice

A Slice is a data structure that organizes portions of the
dataspace that are of interest. Slice organizes information as a
traversable forest of trees. We have incorporated capabilities to
allow for dynamic manipulation and configuration of datasets.
We initialize Slices using results returned from distributed
query evaluations on the Synopsis sketch. The Slice allows us
to create, refine, and fuse information from sketches of diverse
datasets.

3 METHODOLOGY

Our methodology to leverage sketches in support of analytics
over spatiotemporal data encompasses the following:
1) The Slice data structure: The Slice, with its support for data

organization and refinements, is the starting point for an-
alytic operations. The Slice plays a key role in organizing
portions of the Synopsis sketch that satisfy specified query
constraints. [RQ-1, RQ-2]

2) Instrumentation of Slices: The Slice organizes information
identifying the data of interest. We support mechanisms
to refine Slices and operations to combine them with other
Slices in myriad ways. [RQ-2]

3) Materializing Slices: A Slice represents a blueprint identifying
the dataspace of interest. A Slice must be materialized prior
to processing. The materialization encompasses generation
of exploratory datasets, grouping of data items within the
exploratory datasets as shards to ensure data locality, and
load balanced distribution of shards to ensure fast comple-
tion times. [RQ-2, RQ-4]

4) Interoperation with analytical engines: We leverage HDFS as
the entry point for interoperating with myriad analytical
engines. We also focus on timely completion via two opti-
mization features: memory residency to alleviate I/O costs
and just-in-time inflation of shards to reduce the durations
for which shards are memory-resident. [RQ-1, RQ-3]

3.1 Slice [RQ-1, RQ-2]

A first step in the analytics process is identifying portions of
the data space that are of interest. The Synopsis sketch supports
relational and statistical query evaluations. The results of these
query evaluations identify portions of the sketch that satisfy the
specified query constraints. The results manifest as a collection
of tree paths from within the Synopsis sketch that are streamed
back to the clients from each Synopsis node. Each tree path

represents a sliver of the spatiotemporal scope encapsulated by
the sketch.

We organize results from these query evaluations in our
Slice data structure. The Slice organizes the results as a forest
of trees. The Slice supports three organizational features that
simplify data space explorations: traversals, agglomerations,
and reorientations. A Slice can be programmatically traversed
to refine the spatiotemporal scopes or features that are of
further interest.

The Slice data structure maintains internal metadata that
can be queried. This includes information about the number of
tree paths, features, and the underlying spatiotemporal scopes.
Information about the number of observations at different
spatiotemporal scopes, cross-feature covariances, and range of
values for a particular feature can also be retrieved.

Tree paths within a Slice can be agglomerated. For exam-
ple, tree paths from smaller, contiguous spatial scopes can be
combined to produce a smaller set of tree paths under a larger
geospatial scope. The leaves of each tree path culminate in
Welford statistics that are applicable for the agglomerated tree
path. Similar agglomerations can be performed for the temporal
dimension.

The Slice may be used to reorient the trees that comprise
it. Each reorientation produces a logically equivalent version of
the Slice but with differences in the levels associated with the
spatial, temporal, and feature-specific components. Reorienta-
tions also result in differences between the number of nodes
and edges that comprise the Slice; this is because reorientation
may change the fan-outs associated with a particular node.

3.1.1 Java/Scala API
To facilitate effective system interaction, we imported the Java
API into a Scala shell. This offers advantages over a com-
piled application. Scala provides an interactive shell, enabling
dynamic Slice configuration. We provide simple fluent-style
interfaces for initializing Slices from Synopsis queries, chaining
of instrumentation operators for Slice configuration and refine-
ment, and robust Slice materialization. All of these operations
are amenable to moderate updates as iterative analysis requires.

Many commodity analytics engines support Scala integra-
tion. For example, Apache Spark provides a Scala shell inter-
face. This integration allows us to easily import our Java API
and simultaneously drive Slice definition/distribution and ana-
lytics tasks within the same Scala shell. This coupling simplifies
iterative analytics.

3.2 Instrumentation of Slices [RQ-2]

The Slice can be refined to precisely identify portions of the
data space that are of interest. A user may transform Slices
to refine and fuse with other Slices to derive a new Slice that
is suitable for analysis. We support two key mechanisms for
instrumenting Slices: standalone and pairwise.

In standalone refinements, a Slice is incrementally refined
to facilitate precise composition of the dataspace of interest.
In particular, a user performs feature selection by including or
excluding particular features, and controls the chronological
time ranges of the data space and the geographical extents.
Feature-specific refinements include selection of the range of
values that are of interest; these are useful in cases where a
user specifies queries with broad ranges that are then narrowed.
Cross-feature refinements can be performed to include/exclude
tree paths based on thresholds specified for observed covari-
ances at different spatiotemporal scopes and on the range of
values specified for particular feature-value combinations.



5

Pairwise refinements allow information from two different
Slices to be combined into a new Slice. Daisy-chaining of pair-
wise operations using fluent-style interfaces produces a new
Slice from multiple Slices. It is often advantageous to combine
or prune Slices based on common attributes. For example, two
datasets covering a particular region may be merged, or specific
event patterns from one Slice may be subtracted from another.
We provide this functionality with set operations across fea-
tures, which include the union, intersection, and difference
operators. Two Slice datasets are passed to the set operators
as inputs and produce a single Slice as their output. Combined
with the spatiotemporal aspects of the data, set operations are
a powerful way to transform Slices based on element-wise
comparisons. Set operations can be chained, performed for
particular features, and can prune or expand the spatiotemporal
scope of the resulting Slice.

In Listing 1, we present a short Scala example highlighting
the functionality of our Java API. In lines 2 - 5, we initialize a
Slice using a Synopsis query for geohash 9jxd and temperature
range 230 - 328 (K). Lines 10 - 12 display fluent, chained, instru-
mentation operations including Slice union and range selection
(The remainder of the listing is explained in Section 3.3.1).

Listing 1: Scala code outlining Java API functionality. Slice ini-
tialization under geohash and temperature constraints, Slice set
and range instrumentation operations, and Slice materialization
on Anamnesis with a variety of configuration options.
1 // query synopsis for slice
2 var slice1 = Context.synopsisQuery("10.0.0.10",

4500)
3 .setGeohash("9jxd")
4 .addRange("temperature", 232.0f, 328.0f)
5 .execute();
6

7 // slice2 creation redacted
8

9 // slice instrumentation operators
10 var slice3 = slice1
11 .union(slice2)
12 .selectRange("temperature", 260.0f, 300.0f);
13

14 // slice materialization
15 Context.anamnesisMaterializer("10.0.0.40", 8020)
16 .setShardInterval("temperature", 250, 10)
17 .setFeatureIndexes(Array(2, 1))
18 .setFilename("/user/hamersaw/slice1.csv")
19 .setInflationRate(0.8)
20 .execute(slice3);

3.2.1 Maintaining the Lineage of a Slice
Each Slice maintains a lineage construct that encapsulates a full
listing of its instrumentation operations. Lineage is organized
as a tree where each node represents a single operation. We
capture the operation/operand relationship with parent and
children nodes, where an operation’s operands are the lineage
node’s children. The leaf nodes in the lineage graph contain
the query that resulted in the particular Slice. Each lineage
node maintains the entire set of configuration variables for that
operation, allowing for unambiguous Slice reconstruction. A
sample lineage tree for a Slice is shown in Figure 3. Slice S is
constructed by a union of two slices (P and Q) resulting from
two separate queries (Query A and B, respectively). Similarly
Slice R is constructed by Query C. Slice T is built by the
difference between Slice S and Slice R.

The lineage construct serves two purposes. First, a JSON
representation is readily available to identify data origins as ac-
tive Slice counts increase during the iterative analytics process.

Query A Query B Query C

Union
Operator

Difference
Operator

Slice P Slice Q

Slice S

Slice R

Slice T

Slice T Lineage

Fig. 3: An example Slice lineage tree and its JSON represen-
tation including multiple Synopsis queries and set operations.
Lineages provide Slice reproducibility when instrumentation
operations are re-executed.

Second, the lineage construct is leveraged to alleviate fault-
tolerance overhead. The structure may be reliably stored to
disk to persist during system restart or failure. Each lineage
describes a unique Slice which is easily reconstructed based on
its encapsulated directives in case of data corruption.

3.3 Materializing Slices [RQ-2, RQ-4]

A Slice represents the dataspace of interest and is used as the
basis for launching processing tasks. The Slice can be used to
generate exploratory datasets that serve as input to analytical
engines. Generation of exploratory datasets is governed by a
process called materialization. A key step in the process is to
partition the Slice into shards amenable for dispersion and dis-
tributed processing. The materialization process encompasses:

1) Partitioning the Slice into a set of shards.
2) Distributing these shards over the set of available ma-

chines.
3) Inflating the shards in place based on the specified data gen-

eration directives. Our methodology facilitates distributed
generation of statistically-representative, synthetic datasets
that preserve characteristics of the multidimensional fea-
ture space.

4) Encoding records within the inflated shard in myriad for-
mats.

Several customizations are possible for each phase. The
same Slice can be materialized differently to produce different
exploratory datasets.

3.3.1 Support for Sharding

Depending on the analysis being performed, the set of data
items within a dataset may need to be partitioned differently.
Consider the following exemplifying scenario: a data scientist
is interested in exploring usage patterns and potential cost
savings for a smart-grid system. One analysis may target
identifying trends in energy consumption to forecast future
needs. Here data needs to be partitioned at different temporal
scopes such as hours, days, weeks, etc. Another analysis may



6

Fig. 4: Shard distribution techniques compared by datanode memory usage standard deviations and algorithm execution time.
Techniques including genetic algorithms (with a variety of parameter settings), round-robin, and greedy algorithms. X-axis
displayed as “# of machines - # of shards”.

seek to understand the impact of weather on energy consump-
tion patterns. This analysis may partition the primary energy
consumption dataset based on ranges of energy consumption
values and supplement analysis with auxiliary weather data.
Finally, another analysis may seek to identify the peaks in
energy consumption that coincide with peaks in energy prices,
i.e., are energy expenses high because a lot of energy is being
consumed or because the consumption is dominated by usage
during peak prices?

We support partitioning (or sharding) of slices prior to
processing. The sharding process partitions the Slice into a set
of non-overlapping tree paths. Each shard comprises one or
more tree paths; a given tree path belongs to no more than one
shard.

Broadly speaking, a shard can be thought of as grouping
tree paths that satisfy a particular broad constraint. A Slice
encompasses multiple features of interest and one of these
features is designated as the primary key. Once a feature is
designated as the primary key, the trees comprising the Slice
are reoriented to ensure that the feature chosen as the primary
key is now the root node in the forest of trees comprising the
Slice.

Across different shards, the primary key takes on different
ranges of values. The primary key within a shard satisfies
a particular constraint, implicit or explicit. For example, if a
user is interested in analyzing monthly rainfall patterns in a
given year, the primary key would be the timestamp associated
with observations. The tree paths comprising the Slice would
be grouped into 12 shards; the first shard would comprise all
records for January, the second for February, and so forth. In
particular, shards are generated such that they are aligned with
the processing being performed so the computations have data
locality. Ensuring data locality precludes the need to perform
expensive I/O to pull data over the network to the computation.

Continuing our example in Listing 1, we materialize the
resulting Slice in lines 15 - 20. We define the Slice’s shards
by a temperature interval with an upper bound of 250 Kelvin
and delta 10 (resulting in incremental values at intervals of 10
including 250). We include a subset of the features and re-order
them as feature 2, then feature 1. We also set the inflation rate to
0.8 (the resulting synthetic dataset will contain 80% of the total
number of observations in the original data).

3.3.2 Distribution of Shards over a Collection of Machines

Exploratory datasets comprise inflated shards that are dis-
tributed and pinned in memory. Shards comprising the Slice
are distributed and inflated in place. Each shard includes in-
flation directives specifying the number of observations to be
generated for each spatiotemporal scope.

Once a set of shards has been identified, the next challenge
is to distribute shards while load balancing the expected pro-
cessing being performed. The crux of our distribution involves
tracking real-time memory utilization statistics across the set
of available machines and computing shard sizes to inform
distribution of shards.

Using this utilization information, we are able to frame
shard distribution as a combinatorial optimization problem
where we distribute shards such that nodes have proportionally
equal memory utilization; this is equivalent to ensuring that
each node holds roughly the same number of records. Given
that each record is subject to identical processing, we expect the
loads to be balanced. This problem mimics the classic knapsack
problem.

Based on efficient multiobjective solutions for the knapsack
problem [5] and resource allocation [6] we explored genetic
algorithms as a possible solution. The algorithmic parameters
(i.e., evolutionary iterations, population size, and mutation
probability) allow for fine tuning to optimize different shard
distribution scenarios (e.g., many small shards vs. few large
shards). In Figure 4 we evaluate performance of genetic algo-
rithms against simple greedy and round-robin shard distribu-
tion techniques. Both greedy and round robin algorithms iterate
through a list of shards sorted in descending order based on the
observation counts in each shard. The greedy algorithm assigns
each shard to the machine with the lowest memory utilization
at each iteration. The two metrics we use to assess the algo-
rithms are the standard deviation in memory usage across clus-
ter machines and algorithm completion time. A lower standard
deviation in memory usage is indicative of evenly distributed
shards. Figure 4 shows these two metrics performed on varying
problems where the x-axes are represented as “datanode count
- shard count” (shard size range is 10MB - 60MB). It shows that
both greedy and round robin algorithms continually result in
more uniform shard distribution and faster completion times.
However, more complex situations may benefit from the genetic
algorithm approach.



7

TABLE 1: Accuracy comparison of synthetically generated observations with the original dataset using feature means, standard
deviations, and the Kruskal-Wallis test. Benchmarks on 3 unique datasets show our technique produces statistically representative
synthetically generated observations.

Dataset (Observations) Feature (Unit)
Mean Standard Deviation

Kruskal-Wallis P-Value
Original Synthetic Original Synthetic

NOAA (720)
Temperature (Kelvin) 288.1550 288.1838 6.5140 6.5338 0.961
Humidity (Percent) 77.2531 77.1528 19.4883 19.5615 0.9577

NOAA (85920)
Wind Gust (Meters / Sec) 4.0547 4.0548 2.6368 2.6372 0.9493
Pressure Surface (Pascal) 82280.9230 82279.0882 5558.6149 5562.4838 0.9841

NOAA (515640)
Pressure Tropopause (Pascal) 20189.2068 20189.7558 1146.2397 1146.9376 0.9223

Precipitable Water (Millimeters) 16.9493 16.9489 3.4992 3.5012 0.9857

3.3.3 Distributed Generation of Exploratory Datasets

Once shards comprising a Slice have been dispersed over a
collection of machines, the next step is the distributed gen-
eration of exploratory datasets. This involves inflating each
shard in place to produce a statistically representative set of
records for the portion of the data space represented by the
shard. Exploratory datasets serve as input to computations.
Two key characteristics underpin the efficiency of processing:
distribution and data locality. To ensure data locality during
processing, each inflated shard is fully resident on one machine.
Furthermore, these shards are inflated in memory to alleviate
I/O requirements. Processing shards thus involves no network
I/O (because of data locality) and no disk I/O (because of
memory-residency).

Each tree path within the shard represents a spatiotemporal
scope and maintains: (1) summary statistics for each feature
along the path, (2) cross-feature covariances, and (3) the number
of observations reported for that spatiotemporal scope. We
leverage this information to generate synthetic datasets that
are statistically representative of the observed distribution in
values for a feature and the observed feature covariances at
the particular spatiotemporal scope. During the generation of
synthetic datasets, a user may optionally specify the total num-
ber of observations. This information is used to proportionally
generate observations for each tree path comprising the Slice.
Our synthetic data generation process models the observations
and information therein as a discrete Gaussian mixture. The dis-
crete Gaussian mixture flexibly approximates a very broad class
of multivariate distributions. It describes global-scale variation
via variation of mean vectors and covariance matrices across
leaves, and local-scale variation via covariance matrices within
leaves. An inflated shard comprises a collection of records. Each
record represents a multidimensional observation with each
dimension corresponding to a feature of interest.

Micro-benchmark: In Table 1, we report on the statistical rep-
resentativeness of our synthetically generated observations. We
profiled 3 unique spatiotemporal dataspaces to assess represen-
tativeness. NOAA (720), NOAA (515640), and NOAA (85920)
are subsets of the NOAA dataset with durations one week, one
week, and one day; geohashes 9xjd, 9xj, and 9x; and containing
720, 515640, and 85920 observations respectively. Observation
timestamps may be included in sketch definitions. Therefore,
analysis of intervals exceeding one week is unnecessary as
data spanning multiple weeks will be placed into separate tree
paths of the sketch, and each tree path will generate statistically
representative datasets.

The results in Table 1 include two features for each dataset.
We note the statistical representativeness was similar for all
other tested features. We have provided two separate metrics:
(1) combination mean and standard deviation reported for both

the original and synthetic datasets; (2) the p-value for the
Kruskal-Wallis test. The Kruskal-Wallis test is a statistical tech-
nique to determine if two datasets are sampled from different
populations. We use standard confidence level 0.05 to refute the
null hypothesis that the samples are drawn from different pop-
ulations. Table 1 shows that all features (spanning all datasets)
have similar mean and standard deviation values between the
original and synthetically generated observations. Additionally
the Kruskal-Wallis test p-value is far larger than the 0.05 value
required to refute the null hypothesis. The exploratory datasets
are statistically representative of the observed spatiotemporal
phenomena.

3.3.4 Encoding Records in Myriad Formats
Since the Slice is data format agnostic, the exploratory dataset
may be encoded in myriad formats specified by the user.

Integration with both popular analytics engines and in-
house analytics solutions relies on diverse format support. In
addition to a number of common format implementations (CSV,
binary, etc.,) we have leveraged 3rd party libraries including the
NetCDF Java library for Unidata’s [7] Common Data Model
(CDM) to support a large variety of data formats. A novel
advantage our approach has over HDFS is the ability to support
binary formats. We are able to guarantee that no individual
observation spans multiple blocks. Table 2 displays examples
of the diverse set of encoding formats that we support.

3.4 Interoperation with Analytics Engines [RQ-1, RQ-3]

HDFS (Hadoop Distributed File System [2]) is a distributed
file system designed for efficient, fault tolerant data storage

TABLE 2: Table displaying supported dataset materialization
formats. We leverage 3rd party libraries to support myriad
formats. Additionally, our technique enables an HDFS compli-
ant interface for binary formats ensuring blocks are split along
record boundaries.

Format Description
Binary Sequence of binary floats (one per feature)
CSV Comma-Separated Values

Protobuf Google’s language agnostic binary data format
Sequence Mahout / Hadoop data format
GRIB-2 WMO GRIB Edition 2
HDF4 Hierarchical Data Format, version 4
HDF5 Hierarchical Data Format, version 5

netCDF netCDF classic format
netCDF-4 NetCDF-4 format on HDF-5

NEXRAD-3 NEXRAD Level-III Products
OPeNDAP Open-source Network Data Access Protocol

SIGMET SIGMET-IRIS weather radar



8

and retrieval. HDFS targets the dominant use cases of ap-
pends rather than random-writes or in-place updates. Many
distributed analytics engines incorporate support for HDFS, in-
cluding Apache’s Spark, Hadoop, Mahout, Flink, and Google’s
TensorFlow.

In HDFS, files are partitioned into multiple blocks, usually
64MB or 128MB in size. Each block is replicated (default repli-
cation factor is 3) among many machines for redundancy and
high performance as block reads may occur on any replica. This
facilitates distributed analytics allowing a cluster of machines
to operate on different portions of a single file in parallel.

An HDFS deployment consists of instances of two applica-
tions, the namenodes and datanodes. Namenodes are respon-
sible for all control plane traffic including datanode and block
management. The namenode monitors datanode activity and
ensures consistent, balanced data replication. Datanodes are
provisioned for block storage and efficient retrieval. They re-
ceive commands from the namenode to perform block transac-
tions (e.g., initialization, deletion, replication). Data storage and
retrieval in HDFS begins with a client contacting a namenode
requesting datanode locations. The client then directly connects
to each datanode initializing the data transfer.

Canonical HDFS is tightly coupled with on-disk data res-
idency. To read data from disk, it must first be written to
it — expensive disk I/O occurs twice. How can we facilitate
data loading into analytical engines without performing disk I/O?
HDFS also includes functionality such as data replication, cache
management, corruption detection, etc., that are unnecessary
for our problem. Materialization of Slices are transient, with
residency tied to the duration of the analytics process. Further,
our materialization directives allow users to specify the number
of machines to be involved in the analytics process.

We provide seamless integration with analytics engines by
leveraging Anamnesis to present an HDFS-compliant interface.
Our communication protocol implementations are identical to
canonical HDFS serving as a “drop-in” replacement. We have
extensively tested Anamnesis interoperability with the native
HDFS client v2.8.2, Apache Spark v2.2.0, Hadoop v2.8.2, Ma-
hout v0.13, and TensorFlow v1.7.

3.4.1 Comparison of Anamnesis with Canonical HDFS
We compared Anamnesis with canonical HDFS using
RAMDisk storage. RAMDisk provisions a subset of available
RAM as an OS managed in-memory hard drive. The two so-
lutions present an identical interface and in-memory analytics
opportunities but vary greatly in internal functionality. When
integrated into our system we find Anamnesis introduces three
main advantages over canonical HDFS with RAMDisk.
• Native support for Slices: We leverage the low-level HDFS data

transfer API to support data transfer of Slices by breaking
up a Slice into multiple HDFS supported blocks. In doing
so, the data upload workflow is identical to canonical HDFS
except instead of transferring full-resolution data we send
Slice shards. Blocks are then stored internally as a set of
sketch tree paths, and full-resolution datasets are generated
dynamically. These techniques will be explored extensively
in further sections.

• Alleviating system overhead: Overhead manifests in a number
of locations including data replication and data caching. Our
lineage construct and Slice materialization schemes allow
us to sustain failures with targeted recovery — this obvi-
ates the need for replication (though our implementation
supports it). Block-level data corruption is remedied by re-
materializing affected data, whereas corruptions of sketchlets

TABLE 3: A few HDFS control plane message types that were
implemented in Anamnesis to satisfy HDFS compliance.

Operation Description
addBlock Add a block to an existing file.

create Create file.
delete Delete file.

getBlockLocations Return locations of datanodes owning block.
mkdirs Make directories.
rename Rename a file or directory.

setPermission Set the permissions on a file or directory.
registerDatanode Initial datanode registration.

sendHeartbeat Heartbeat message containing datanode status.
blockReport Block information (corruption, ownership, etc).

require Slice redistribution from the Synopsis system. Both
techniques result in negligible execution times compared to
overall analytics times. Data caching is unnecessary with in-
memory analytics systems. Canonical HDFS relies on data
caching to provide high performance operations by negating
disk I/O for popular portions of the dataspace. Tachyon [8]
notes that as a result of Java I/O streams, RAMDisk HDFS
fails to bypass caching and requires a separate data copy to
memory (even though data is already memory resident in a
RAMDisk). This reduces read speeds to almost half of the
achievable in-memory speed.

• Network I/O reduction: We reduce network I/O in a number of
places. First, our native support for sketches vastly reduces
bandwidth induced during file creation. Canonical HDFS
requires transfer of full-resolution data while Anamnesis is
able to transfer compact Slices. Second, we construct and
distribute shards based on the proposed analytics. Analytics
engines attempt to schedule tasks on machines while ensur-
ing data locality to reduce network I/O. We are able to shard
our dataset and tailor data placement to minimize necessary
data transfer during analytics. For example, consider the case
where we want to generate a histogram for temperatures in
intervals of 10. While canonical HDFS needs to aggregate
each interval from each datanode, we can ensure the shard
for each interval is stored on a single datanode.

In HDFS, the interprocess RPC-based communication is
based on Protobuf [9], Google’s protocol buffer implementa-
tion. Protobuf uses its own language to define custom mes-
sage structures. Compilers are implemented for most popular
languages to produce native code to serialize/deserialize and
interact with messages. As a result Protobuf provides language-
agnostic message serialization.

Anamnesis emulates the HDFS architecture with separate
namenode and datanode applications. Control plane commu-
nication is isolated in the namenode and leverages the afore-
mentioned custom RPC implementation. We implemented 16
different operations for client to namenode communication
and 3 operations for datanode to namenode communication.
A few example operations are provided in Table 3. The data
plane handles transfer of blocks and is present only at the
datanodes. While Protobuf facilitate simplicity for RPC, the
inherent overhead (Java reflection, additional serialization/de-
serialization costs) is not suitable for transfer of raw data blocks.
Therefore, the HDFS project utilizes a separate binary protocol
to read / write blocks at the datanodes. We reimplemented
and integrated this protocol into our datanode implementation.
Additionally we extended it to include native sketch transfers.
This allows us to support canonical HDFS operations along
with sketch based read/write operations.



9

3.4.2 Handling Memory Contention

Our application relies on in-memory working datasets and is
therefore subject to memory contention constraints. The chal-
lenge of successfully executing on commodity hardware com-
pounds the issue. To combat memory contention we employ
two techniques: just-in-time inflation and memory eviction.

Just-In-Time Inflation: Generation of full-resolution datasets
is delayed until requested. Anamnesis stores blocks as a set
of sketch tree paths, which are significantly smaller than full-
resolution data. This serves to reduce both network I/O and
datanode memory usage. All blocks in the system fall under
one of two states: uninflated or inflated. Uninflated blocks con-
tain only the shards that encapsulate the tree paths, whereas
inflated blocks additionally contain a full-resolution synthet-
ically generated dataset. Upon data request, an uninflated
block transitions to an inflated state by adaptively generating
synthetic data for the shard. Our just-in-time inflation ensures
that no data is memory resident until it is needed.

Memory Eviction: We periodically monitor datanode memory
utilization and trigger targeted memory eviction based on
configurable thresholds. For example, if datanode memory is
saturated beyond 80% we may attempt to reduce it to 40%. This
process iterates over inflated blocks and flags “cold” blocks
based on block usage patterns. The aim is to allow popular
blocks to remain in memory and be readily available. Blocks
flagged for eviction are simply transitioned from the inflated
state to uninflated by erasing the full-resolution dataset. Since
a block comprises self-describing shards a new, full-resolution
synthetic dataset may be generated dynamically for subsequent
requests with negligible time and resource costs (as explored in
Figure 5).

Figure 6a depicts the Anamnesis data block paradigm of
a single datanode. We see that each datanode contains many
blocks that fall into one of the two states, inflated or uninflated.
In Figure 6b, inflated blocks contain full-resolution data (shown
by the array of data in the data portion), whereas uninflated
blocks contain an empty data portion. All blocks contain an
identifying number (ID) and the set of tree paths comprising
the shards that define it. Uninflated blocks become inflated as
the data is requested and inflated blocks revert to uninflated as
the memory eviction process flags them for removal.

Figure 7 contrasts Anamnesis (with and without just-in-

1 2 3 4 5 6 7 8 9 10
Feature Value Count (Millions)

0

1

2

3

4

5

6

E
la

p
se

d
 T

im
e
 (

s)

CSV

NetCDF3

NetCDF4/HDF5

Binary

Fig. 5: Linearly increasing synthetic observation generation
times based on the number of feature-values requested when
performed on a single machine. Binary formats, including
NetCDF, outperform human readable formats such as CSV.

time inflation and memory eviction) and RAMDisk HDFS. All
systems were evaluated on a sequence of 50 write and 80 read
requests issued over 1000 seconds. Each operation is performed
on a subset (approximately 287 MB chunks) of NOAA data.
We focus on a single datanode in this experiment. In all plots
the x-axis presents the elapsed time of the write/read sequence
in seconds and the y-axis is memory usage in MB. The top
graph shows Anamnesis (with the aforementioned memory
contention handling techniques). In this experiment we cap
JVM memory allocation at 10GB and notice the system reaches
that at around 500 seconds. The entire sequence successfully
completes while Anamnesis’ memory usage remains below the
memory cap. The constant fluctuations in memory usage are
due to periodic JVM garbage collection. The middle graph con-
tains default Anamnesis without any memory contention han-
dling techniques. In this experiment we allocate a maximum of
30GB of memory to the JVM. As memory usage surpasses the
system’s available RAM, the OS automatically uses the Linux
swap disk. We find the constant use of Linux swap disk results
in extremely poor performance, and the sequence requires over
5000 seconds to complete. The final graph focuses on RAMDisk
HDFS. We allocated a 6GB RAMDisk, which is a maximum
allotment on a machine with 12GB of RAM. Since this setup
stores data in a RAMDisk, we plot that usage in addition to
JVM and Linux swap disk. The system successfully copes with
the write/read operation sequence until the 495 second times-
tamp where the RAMDisk becomes full. All subsequent write
operations fail. This experiment shows that existing solutions
are inadequate in handling memory contention when coupled
with our system. Similarly under real-world use, a memory-
resident sketch aligned file system requires memory contention
handling to remain useful. We show that the combination of
just-in-time inflation and data eviction can successfully mitigate
continuous memory contention the system encounters.

4 SYSTEM BENCHMARKS

Here we report on our systems benchmarks that profile the
suitability of our methodology at scale. With these experiments
we aim to highlight interoperability of Anamnesis with popular
analytics engines, performance improvements across analytics
engines, and accuracy of analytics performed on synthetic
datasets. In particular, we:
1) Profile the performance improvements inherit in our system

for dataset filtering operations. Worst-case filtering is com-
pared with canonical HDFS.

2) Assess the impact on analyses completion times, network
I/O, and data I/O for several commonly leveraged analytic
operations. We contrast these attributes for the same analysis
code expressed using different analytic engines with and
without our optimizations.

3) Contrast the suitability and accuracy of using exploratory
datasets when using them for fitting analytical models to
the data.

4.1 Experimental Setup
We executed all benchmarks on a set of 50 Hewlett-Packard
DL160-G6 machines equipped with a 6-core 2.4 GHz Intel
Xeon CPU E5-2620 v3 processor and 16GB RAM. Each machine
currently runs Fedora 26 with the 4.15 kernel. For testing we
used Hadoop v2.8.2, Spark v2.2.0, and TensorFlow v1.7.

Our benchmarks are performed on two years of data im-
puted from the NOAA dataset. We have filtered the dataset so
each observation contains 56 features uniformly reported in the
dataspace. The total size of the dataset is 18TB.



10

Analytic Engine Worker

HDFS Datanode API

Inflated Blocks

Data Blocks

Uninflated Blocks

…

Anamnesis Datanode

Cluster Node

(a) Co-located worker processes of analytical engines request
blocks through the Anamnesis HDFS API. A block could

either be inflated or uninflated depending on the memory
contention level of the datanode.

Block Id: 41971967

Sketches

Data

Block Id: 41971967

Sketches

Data: NULL
Inflation/Deflation

Uninflated Block Inflated Block

(b) State transitions between uninflated and inflated blocks based on data
requests and memory eviction respectively. These techniques aim to

combat memory contention issues of Anamnesis deployments on
commodity hardware.

Fig. 6: Data architecture focusing on block storage.

The HDFS setup provisions a single machine as the na-
menode and the other 49 as datanodes. Storage is restricted
to a single 4TB HDD on each machine. Similarly, Anamnesis
is deployed with 1 machine as the namenode and the other 49
as datanodes. Both the Anamnesis namenode and datanodes
allocate 8GB for the Java heap.

All analytics engines are deployed with a single master lo-
cated on the same machine as the HDFS/Anamnesis namenode
and workers on the other 49 machines. To provide a uniform
comparison we configured all analytics engines to leverage the
YARN resource manager.

101

102

103

104

105

Job
Completion

(0h:16m:35s)

Anamnesis With Just-In-Time Inflation

100

101

102

103

104

105

M
e
m

o
ry

 U
sa

g
e
 (

M
B

)

Job
Completion

(1h:33m:03s)

Anamnesis Without Just-In-Time Inflation

100 101 102 103 104

Elapsed Time (s)

10-2
10-1
100
101
102
103
104

Process
Failure

(0h:16m:38s)

RAMdisk HDFS

Heap Usage

Linux Swap Usage

Max. Allocated Heap

RAMDisk Usage

Fig. 7: Comparison of memory contention techniques in Anam-
nesis with default Anamnesis and RAMDisk HDFS. Each ar-
chitecture was evaluated under an identical random sequence
of read and write operations. We outline Anamnesis’ unique
ability to successfully complete under memory constraints.

4.2 Dataset Filtering
To support exploratory analytics it is paramount the system
can efficiently identify a subset of the dataspace. In the best
case, HDFS can tailor efficient data retrieval based on a number
of features by manipulating the file hierarchy. For example,
placing individual files under directories based on temporal
and/or spatial intervals. While this paradigm may simplify
filtering on the specified features, inclusion of every feature
is impossible. To support high dimensionality dataset filtering
within HDFS, iteration over every observation in the dataspace
is required. Alternatively, by constructing Sketches using a
forest of trees, Synopsis intrinsically presents an index over the
data. Therefore, any subset of the dataspace can be identified
by fast, in-memory tree traversal.

We present our dataset filtering analyses in Figure 8. In
this experiment we compare worst case dataset filtering op-
erations between HDFS and Anamnesis using Apache Spark.
In each instance filtering criteria contains temporal (1 month)
and spatial (geohash = “9”) constraints. The resulting dataset is
approximately 400GB. We iteratively increase the base dataset
size to showcase our systems ability to filter any size of data
with a fixed cost, whereas HDFS increases with size.

We explore filtering operations duration in Figure 8a. Anam-
nesis demarcates the times for the Synopsis query and data
distribution. We see a 30x, 288x, and 587x reduction in filtering
duration when compared to HDFS with base datasets of 1
month, 1 year, and 2 years respectively. Most importantly, the
duration to filter using Anamnesis remains constant (approxi-
mately 5 minutes) and is independent of the dataset size.

In Figure 8b we provide information on I/O incurred during
filtering operations. Network I/O decreases 268x, 2563x, and
5237x when filtering from 1 month, 1 year, and 2 years respec-
tively. This reduction is attributed to (1) all data in transit within
our system is being sketched, therefore we benefit from this
base data size reduction and (2) HDFS shuffles data between
workers during analysis, which is unnecessary with our system.

In all experiments, filtering with HDFS requires the entire
dataset to be read from disk. This results in approximately
900GB of disk I/O to filter 1 month and just over 9TB in the
case of 1 year. Alternatively, by leveraging the Synopsis sketch
Anamnesis performs all filtering actions in memory, resulting
in no disk I/O in either case.

4.3 Histogram Generation
A histogram aims to accurately approximate the probability
distribution of a single variable. The algorithm requires users



11

(a) Duration of filtering operations. Anamnesis
provides up to 587x reduction by filtering in a fixed

time (5 minutes) despite increasing dataset sizes.

(b) Network and disk I/O incurring during filtering operations. Anamnesis
shows up to a 5237x reduction in network I/O and disk I/O is completely

eliminated.

Fig. 8: Reports on dataset filtering operations comparing Anamnesis with HDFS using Apache Spark over a variety of pre-
filtered dataset sizes. Cumulative times reported for Anamnesis demarcate query and data distribution times. All graphs have a
logarithmically scaled y-axis, required to visualize the large differences.

to split the range of values into a series of non-overlapping
intervals, or “bins”. A histogram is produced by plotting bars
for each increasing interval on the x-axis, and the number of
observations that belong to that bin on the y-axis. This results in
an estimation of the kernel density, where smaller bin interval
sizes result in a more accurate representation. We have chosen
this algorithm as a common exploratory analytics example
because it provides a fair, single data pass comparison between
Hadoop and Spark.

For this experiment we chose bin interval sizes of length 10,
resulting in 14 unique bins with temperature values ranging
from 230 to 370 Kelvin. We performed analyses on the 400GB
filtered dataset we produced in Section 4.2. The total number
of observations in both the HDFS and Anamnesis experiments
was 424 million. The combined difference in observation counts
across all bins was just 2.8 million or 0.67% of the total number
of observations. In Table 4 we present duration, network I/O,
and disk I/O of histogram generation contrasting HDFS with
Anamnesis using both Spark and Hadoop.

We see analysis duration is reduced by 15x and 34x for
Spark and Hadoop respectively. For Anamnesis, the reported
duration includes the time required to generate synthetic
datasets from the sketched data (ie. transitioning data blocks
from the uninflated to inflated states). This time is included but
not separately reported because it is insignificant (in the order
of milliseconds).

Network I/O is reduced by 20x for Spark and 47x for
Hadoop. This is a construct of our data sharding paradigm.
When distributing data over the cluster, we tailor data place-

TABLE 4: Duration, network I/O, and disk I/O incurred by
when generating a histogram using both Spark and Hadoop
over HDFS and Anamnesis clusters. Duration is reduced by
15x and 34x for Spark and Hadoop respectively. Additionally,
network I/O is reduced by up to 47x and disk I/O is completely
eliminated.

Analytics Engine Storage Duration
I/O

Network Disk

Apache Spark
Anamnesis 3:26.9 18GB 0GB

HDFS 52:54.1 362GB 343GB

Hadoop
Anamnesis 2:27.2 27.9GB 0GB

HDFS 1:24:08.9 1.3TB 2.54TB

ment for data locality during analytics. In this case, we dis-
tribute data based on temperature and ensure each machine
only contains data within a distinct interval.

HDFS incurs approximately 350GB and 2.5TB of disk I/O
for analysis using Spark and Hadoop respectively. During
Spark analytics the entire dataset needs to read into mem-
ory. Hadoop had multiple Map/Reduce iterations that each
required read and write operations. Alternatively, Anamnesis
completely eliminates all disk I/O, as data is memory resident.

4.4 Model Fitting
In Table 5, we use Google’s TensorFlow framework [10] to
evaluate machine learning models. TensorFlow simplifies use of
machine learning for large-scale problems. TensorFlow can be
deployed with an HDFS backend. In this experiment, we con-
trast the suitability of using exploratory datasets versus using
full-resolution, on-disk data for model fitting and demonstrate
application compatibility. Analysis in Table 1 focused on data
accuracy at the feature granularity but failed to validate that
the synthetic and original data maintain accurate interfeature
relationships.

We trained and evaluated multiple regression models using
linear techniques, deep neural networks, and a combination of
the two. We used two datasets that both contained 6 features.
The first was 1 day with geohash “du” and the second 1
week with geohash “9x”. The datasets were partitioned into
training (80%) and evaluation (20%). The synthetically trained
models were trained on the 80% synthetically generated data
but evaluated on the same 20% original dataset that the original
trained models were evaluated on.

Our models were built to predict a single target based on
the other 5 features. The average loss reported value is the
Root Mean Squared Error function commonly used in training
regression models. The value is computed by averaging the
squared difference between predicted and actual values and
calculating the square root value. We report on 6 experiments,
noting that other experiments showed similar results and simi-
lar accuracy between a variance of variables, model types, and
datasets. The results show no significant difference between the
synthetic and original datasets.

5 RELATED WORK

Many popular relational and NoSQL database systems have
extensions supporting spatial queries. [11] and [12] provide



12

TABLE 5: Root mean square error comparisons on regressors developed using Google’s TensorFlow framework between original
data (RAMDisk HDFS) and synthetically generated observations (Anamnesis). Experiments were performed on 2 datasets with
varying spatiotemporal scopes and incorporating 6 features, where 5 were chosen to predict the 6th.

Dataset (Observations) Feature (Unit) TensorFlow Estimator
Root Mean Squared Error
Original Synthetic

NOAA (85920)
Pressure Surface (Pascal) Linear Regressor 5341.73 5386.72

Precipitable Water (Inches) Linear Regressor 4.21 5.33

NOAA (5255840)

Temperature (Kelvin) DNN/Linear Combined 15.36 16.22
Humidity (Percent) DNN/Linear Combined 21.27 21.17

Pressure Tropopause (Pascal) Deep Neural Network Regressor 2404.16 2159.68
Wind Gust (Meters / Sec) DNN/Linear Combined 3.41 3.97

spatial query support for points, lines and polygons for mari-
adb and postgres respectively. Geomesa [13] combines three
elements of geometry and time using a custom geohash imple-
mentation to provide queries using Google Cloud Bigtable [14],
Apache HBase [15], Cassandra [16], and more. Some efforts [17],
[18] provide spatial support for the MapReduce framework.
Unlike these systems, our implementation natively supports ef-
ficient spatiotemporal queries provided by the Synopsis sketch.
This alleviates overheads in the extension subsystem.

Distributed systems are trending towards in-memory data
storage, mitigating disk I/O in favor of magnitudes faster
RAM. Redis [19] provides extensive functionality for a key-
value storage framework but large datasets are unlikely to fit
in a clusters RAM. Apache’s Ignite [20] relies on a storage
hierarchy to facilitate disk persistence of in-memory datasets
enabling larger data sizes and failure resiliency. In-memory
systems suffer from the relatively low RAM availability of
commodity hardware. This greatly reduces deployability in a
variety of environments. While some systems are adopting a
storage hierarchy we use just-in-time inflation and memory
eviction techniques to ensure full-resolution data is only in
memory as needed. This allows us to provide an entirely in-
memory storage system without incurring expensive disk I/O.

Analytics over voluminous data have been driven by dis-
tributed engines that interface with HDFS. Hadoop [21] pro-
vides an open source Map-Reduce framework. Mahout [22]
extends the MapReduce framework to include linear-algebra
specific functionality. Spark [23] and SparkSQL [24] offer var-
ious analytical operations on in-memory RDDs (Resilient Dis-
tributed Datasets). Additional tools [25] enable machine learn-
ing over HDFS. Anamnesis implements an identical commu-
nication protocol to HDFS. We support integration with all
of the aforementioned tools providing an in-memory storage
system able to reliably alleviate memory contention for iterative
analytics.

Extensions on distributed analytics engines enable spa-
tiotemporal queries. The SpatialHadoop framework [26] sup-
ports indexing spatial data using grid files, R-trees and R+-
trees to perform efficient data retrieval. Hadoop-GIS [27] ex-
tends this functionality to provide relation queries such as
contains, intersects, distance, etc. Geospark [28] maintains R-
trees and Quadtrees to create indexes on 4 types of RDDs:
PointRDD, RectangleRDD, CircleRDD, and PolygonRDD. Spa-
tialSpark [29] introduces a distributed spatial join over datasets.
STARK [30] builds on both Geospark and SpatialSpark to
include persistent indexes and additional analytics operations
including nearest neighbors and clustering. These frameworks
rely on indexing spatiotemporal features during data writes
to efficiently evaluate queries. SpatialHadoop and Hadoop-
GIS target the storage layer, whereas Geospark, SpatialSpark,
and STARK work during analytics. Alternatively our system

provides this functionality at a more conceptual phase. Slices
provide the ability to initialize and configure datasets based
on a variety of spatial and temporal properties. Our system
supports identical operability without incurring significant re-
source utilization. Additionally all of the Spark extensions
may easily integrate with our system to provide any missing
functionality.

Simba [31] introduces native spatial querying operators into
Spark SQL [24] and Dataframes. This extended API allows
users to implement geospatial analytic tasks directly on Spark.
But our approach offers more benefits especially for streaming
datasets. It enables performing ad-hoc analytics on historic
data without having to store the entire stream, which is space
inefficient.

Tao et al. [32] support distinct counting queries over single
attribute spatiotemporal data. Their work extends the previous
work on aRB trees [33] to maintain the spatiotemporal index
(using R trees and B trees to implement spatial and temporal
indexing respectively). It also uses a sketch based on FM
algorithm [34] to maintain the distinct objects for individual
spatiotemporal scopes. In comparison, Synopsis (our underly-
ing sketching algorithm) supports multifeature spatiotemporal
data streams and a wider range of queries. On the other
hand, most of the design principles presented in this work to
achieve efficient data analytics are applicable to other sketching
frameworks.

There have been several efforts to improve HDFS MapRe-
duce performance by allowing programmers tighter control
over data caching and placement to facilitate in-memory data
local analytics [35], [36], [37]. Users may specify a subset of
the dataspace to be read into cache. Additionally, MapReduce
operations requiring multiple iterations may keep intermediary
datasets cached instead of disk writes. While these systems
combat network and disk I/O at the analytics level our ap-
proach targets data storage. We eliminate program cache co-
herency issues by making all working sets memory resident.
This ensures mitigation of all disk I/O.

Recent work has extended the HDFS codebase to make
in-memory HDFS analytics available. Triple-H [38] integrates
a data hierarchy paradigm leveraging diverse storage medi-
ums (RAM, SSD, HDD) that make working datasets memory-
resident. This allows the system to cope with much larger
datasets than the collective memory capacity of the cluster.
Tachyon [8] relies on data lineages and data checkpointing to
store working datasets in memory while deleting temporary
intermediary datasets. Using their lineage construct, datasets
may be re-computed in the background based on access and
resiliency requirements. Our work also produces an in-memory,
HDFS compliant analytical interface. The advantage of our
solution is the massive reduction in network I/O. The system
transports data sketches instead of full-resolution data, result-



13

ing in a 50x reduction in network I/O during analytics.
Generating representative synthetic datasets based on orig-

inal data has been explored in statistical work. MUNGE [39]
and many SMOTE variants [40], [41] under sample the mi-
nority class and over-sample the majority dataset to achieve
representative synthetic datasets. These techniques focus on
capturing and reproducing representative data outliers. This in-
depth functionality is unnecessary in our system. The Synopsis
sketch successfully captures data outliers by defining various
data boundaries in its tree paths. We can generate highly
configurable, representative synthetic datasets based on this
representation.

6 CONCLUSION AND FUTURE WORK

In this work we have presented Anamnesis, our methodol-
ogy to facilitate fast analytics over spatiotemporal data. To
our knowledge, Anamnesis is the first sketch-aligned, HDFS-
compatible file system. Below we address our initial research
questions.
RQ-1: We significantly alleviate inefficiencies resulting from
the speed differential across the memory hierarchy. Anamnesis
facilitates memory-residency of exploratory datasets, makes
frugal use of memory, and avoids all disk I/O. We employ
just-in-time inflation and memory eviction techniques to enable
continuous analytics without memory contention.

RQ-2: Effective sharding vastly reduces network I/O dur-
ing analytics. By tailoring dataset distribution based on the
proposed analytics, we allow analytic engines to successfully
schedule tasks while preserving data locality. Additionally
the process of identifying sketches and generating synthetic
datasets enables efficient exploratory analytical operations
without incurring unnecessary network I/O during dataset
filtering and refinements.

RQ-3: Anamnesis is an in-memory implementation compatible
with canonical HDFS. This allows interface with diverse an-
alytical engines. Our implementation facilitates adoption into
existing workflows by serving as a “drop-in” replacement for
any HDFS deployment.

RQ-4: A combination of the techniques described in this work
(in-memory analytics, reduced network I/O, etc.) ensures fast
analytics completion times. We have shown Anamnesis’ ability
to filter datasets with a fixed cost and offer evaluation per-
formance gains of up to 47x when executing a diverse set of
analytical operations over HDFS.

6.1 Future Work
Zero copy analytics: Our approach requires in-memory dataset
duplication for most analytics. For example, analytics using
Apache Spark require the data to be Anamnesis resident (one
copy) and read into a Spark RDD (second copy). Using shared
memory with a custom Spark connector we should be able to
operate on a single in-memory copy. Anamnesis will material-
ize blocks into a shared memory segment which may then be
read by the custom Spark connector.

Resource usage sharding optimization: Our algorithm for distribu-
tion of Slice shards only accounts for memory usage at each
datanode. Intuitively we believe that analytics performed on
similar sized data will take similar durations. While it proven
a great starting point, this may not hold in all scenarios. For
example, if a particular datanode contains a disproportionate
share of popular (or unpopular) data. We propose including
more system resources in the data sharding algorithm for better

load-balancing. Leveraging CPU utilization, and network I/O
statistics may provide additional insight into utilization beyond
memory usage.

Data interpolation: The system can only produce synthetic obser-
vations based on statistical representations of known datasets.
The ability to leverage relationships between known datasets
to produce synthetic observations for an unknown dataset is
beneficial to myriad analytics. For example, we have a 2018
dataset for Denver, Boulder, and Fort Collins. If we have April
data for Fort Collins and Boulder, can we leverage the rela-
tionships between between all of the datasets to interpolate a
dataset for April in Denver? We aim to adopt proven techniques
to accurately produce the proposed datasets with our system.

6.2 Experimental Reproducability
The source code for all applications used in this work are
hosted in public git repositories. Anamnesis is located at https:
//github.com/hamersaw/anamnesis and Synopsis at https:
//github.com/thilinamb/synopsis. These are Java projects us-
ing the Gradle and Maven build systems for Anamnesis and
Synopsis respectively.

Both the NOAA weather and EPA air quality datasets are
publicly available. The NOAA dataset is available in a num-
ber of formats. We specifically used the GRIB format avail-
able at https://nomads.ncdc.noaa.gov/data/namanl. The EPA
dataset is available at https://aqs.epa.gov/aqsweb/airdata/
download files.html#Raw.

ACKNOWLEDGMENTS

This research has been supported in part by grants the US
National Science Foundation [OAC-1931363, ACI-1553685], the
US Department of Homeland Security [D15PC00279], the Ad-
vanced Research Projects Agency - Energy(ARPA-E), and a
Cochran Family Professorship.

REFERENCES

[1] T. Buddhika, M. Malensek, S. L. Pallickara, and S. Pallickara,
“Synopsis: A distributed sketch over voluminous spatiotemporal
observational streams,” IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 11, pp. 2552–2566, 2017.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system: Mass storage systems and technologies
(msst) 2010 ieee 26th symposium on,” in Mass Storage Systems and
Technologies (MSST), 2010 IEEE 26th Symposium on, 2010.

[3] G. Niemeyer. (2008) Geohash. [Online]. Available: http://en.
wikipedia.org/wiki/Geohash

[4] B. Welford, “Note on a method for calculating corrected sums of
squares and products,” Technometrics, vol. 4(3), pp. 419–420, 1962.

[5] C.-M. Lin and M. Gen, “Multi-criteria human resource allocation
for solving multistage combinatorial optimization problems using
multiobjective hybrid genetic algorithm,” Expert Systems with Ap-
plications, vol. 34, no. 4, pp. 2480–2490, 2008.

[6] M. J. Alves and M. Almeida, “Motga: A multiobjective tchebycheff
based genetic algorithm for the multidimensional knapsack prob-
lem,” Computers & operations research, vol. 34, no. 11, pp. 3458–3470,
2007.

[7] R. Rew and G. Davis, “Netcdf: an interface for scientific data
access,” IEEE computer graphics and applications, vol. 10, no. 4, pp.
76–82, 1990.

[8] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon:
Reliable, memory speed storage for cluster computing frame-
works,” in Proceedings of the ACM Symposium on Cloud Computing.
ACM, 2014, pp. 1–15.

[9] P. Buffers, “Google’s data interchange format,” 2011. [Online].
Available: https://developers.google.com/protocol-buffers/

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

https://github.com/hamersaw/anamnesis
https://github.com/hamersaw/anamnesis
https://github.com/thilinamb/synopsis
https://github.com/thilinamb/synopsis
https://nomads.ncdc.noaa.gov/data/namanl
https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw
https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw
http://en.wikipedia.org/wiki/Geohash
http://en.wikipedia.org/wiki/Geohash
https://developers.google.com/protocol-buffers/


14

[11] E. Katsikaros, “Towards the universal spatial data model based
indexing and its implementation in mysql,” Kongens Lyngby, 2012.

[12] R. Obe and L. Hsu, “Postgis in action,” Geoinformatics, vol. 14,
no. 8, p. 30, 2011.

[13] J. N. Hughes, A. Annex, C. N. Eichelberger, A. Fox, A. Hulbert,
and M. Ronquest, “Geomesa: a distributed architecture for spatio-
temporal fusion,” in Geospatial Informatics, Fusion, and Motion Video
Analytics V, vol. 9473. International Society for Optics and
Photonics, 2015, p. 94730F.

[14] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Transactions
on Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[15] L. George, HBase: the definitive guide: random access to your planet-
size data. ” O’Reilly Media, Inc.”, 2011.

[16] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35–40, 2010.

[17] S. Zhang, J. Han, Z. Liu, K. Wang, and S. Feng, “Spatial queries
evaluation with mapreduce,” in 2009 Eighth International Confer-
ence on Grid and Cooperative Computing. IEEE, 2009, pp. 287–292.

[18] A. Cary, Z. Sun, V. Hristidis, and N. Rishe, “Experiences on pro-
cessing spatial data with mapreduce,” in International Conference
on Scientific and Statistical Database Management. Springer, 2009,
pp. 302–319.

[19] J. L. Carlson, Redis in action. Manning Publications Co., 2013.
[20] S. Bhuiyan, M. Zheludkov, and T. Isachenko, “High performance

in-memory computing with apache ignite,” 2017.
[21] A. S. Foundation, “Apache hadoop,” 2018.
[22] S. Owen and S. Owen, “Mahout in action,” 2012.
[23] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and

I. Stoica, “Spark: cluster computing with working sets.” HotCloud,
vol. 10, pp. 10–10, 2010.

[24] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql:
Relational data processing in spark,” in Proc. of the International
Conference on Management of Data. ACM, 2015, pp. 1383–1394.

[25] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a
single engine,” Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, vol. 36, no. 4, 2015.

[26] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce
framework for spatial data,” in Data Engineering (ICDE), 2015 IEEE
31st International Conference on. IEEE, 2015, pp. 1352–1363.

[27] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz,
“Hadoop gis: a high performance spatial data warehousing system
over mapreduce,” Proceedings of the VLDB Endowment, vol. 6,
no. 11, pp. 1009–1020, 2013.

[28] J. Yu, J. Wu, and M. Sarwat, “Geospark: A cluster computing
framework for processing large-scale spatial data,” in Proceedings
of the 23rd SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM, 2015, p. 70.

[29] S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join query
processing in cloud,” in Data Engineering Workshops (ICDEW), 2015
31st IEEE International Conference on. IEEE, 2015, pp. 34–41.

[30] S. Hagedorn, P. Götze, and K.-U. Sattler, “The stark framework
for spatio-temporal data analytics on spark,” Datenbanksysteme für
Business, Technologie und Web (BTW 2017), 2017.

[31] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba: Efficient
in-memory spatial analytics,” in Proceedings of the 2016 International
Conference on Management of Data. ACM, 2016, pp. 1071–1085.

[32] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias, “Spatio-
temporal aggregation using sketches,” in Proc. of the Intl. Conference
on Data Engineering, March 2004, pp. 214–225.

[33] D. Papadias, Y. Tao, P. Kanis, and J. Zhang, “Indexing spatio-
temporal data warehouses,” in Proc. of the Intl. Conference on Data
Engineering, 2002, pp. 166–175.

[34] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms
for data base applications,” Journal of computer and system sciences,
vol. 31, no. 2, pp. 182–209, 1985.

[35] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop: Efficient
iterative data processing on large clusters,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 285–296, 2010.

[36] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu,
and G. Fox, “Twister: a runtime for iterative mapreduce,” in Pro-
ceedings of the 19th ACM international symposium on high performance
distributed computing. ACM, 2010, pp. 810–818.

[37] A. Shinnar, D. Cunningham, V. Saraswat, and B. Herta, “M3r:
increased performance for in-memory hadoop jobs,” Proceedings
of the VLDB Endowment, vol. 5, no. 12, pp. 1736–1747, 2012.

[38] N. S. Islam, X. Lu, M. Wasi-ur Rahman, D. Shankar, and D. K.
Panda, “Triple-h: A hybrid approach to accelerate hdfs on hpc
clusters with heterogeneous storage architecture,” in Cluster, Cloud
and Grid Computing (CCGrid), 2015 15th IEEE/ACM International
Symposium on. IEEE, 2015, pp. 101–110.

[39] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model com-
pression,” in Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2006,
pp. 535–541.

[40] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-smote: a new
over-sampling method in imbalanced data sets learning,” in Inter-
national Conference on Intelligent Computing. Springer, 2005, pp.
878–887.

[41] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap, “Safe-
level-smote: Safe-level-synthetic minority over-sampling tech-
nique for handling the class imbalanced problem,” in Pacific-Asia
conference on knowledge discovery and data mining. Springer, 2009,
pp. 475–482.

Daniel Rammer is a Ph.D. candidate in the
Department of Computer Science at Colorado
State University. His research interests involve
big data and distributed analytics. In particu-
lar systems approaches for distributed analytics
over voluminous spatiotemproal data in myriad
domains. Email: rammerd@rams.colostate.edu

Thilina Buddhika is a Ph.D. candidate in
the Computer Science department at Colorado
State University. His research interests are in
the area of real time, high throughput stream
processing specifically targeted to environments
such as Internet of Things (IoT) and health care
applications. Email: thilinab@cs.colostate.edu

Matthew Malensek is an Assistant Professor
in the Department of Computer Science at the
University of San Francisco. His research in-
volves big data, distributed systems, and cloud
computing, including systems approaches for
processing and managing data at scale in a
variety of domains, including fog computing
and Internet of Things (IoT) devices. Email:
mmalensek@usfca.edu

Shrideep Pallickara is an Associate Professor
in the Department of Computer Science and a
Monfort Professor at Colorado State University.
His research interests are in the area of large-
scale distributed systems. He received his Mas-
ters and Ph.D. degrees from Syracus University.
He is a recipient of an NSF CAREER award.
Email: shrideep@cs.colostate.edu

Sangmi Lee Pallickara is an Associate Pro-
fessor in the Department of Computer Science
at Colorado State University. She received her
Masters and Ph.D. degrees in Computer Sci-
ence from Syracuse University and Florida State
University, respectively. Her research interests
are in the area of large-scale scientific data man-
agement. She is a recipient of the NSF CAREER
award. Email: sangmi@cs.colostate.edu


	Introduction
	Challenges
	Research Questions
	Approach Summary
	Experimental Datasets
	Paper Contributions

	Systems Overview
	Synopsis Sketch
	System Architecture
	Slice

	Methodology
	Slice [RQ-1, RQ-2]
	Java/Scala API

	Instrumentation of Slices [RQ-2]
	Maintaining the Lineage of a Slice

	Materializing Slices [RQ-2, RQ-4]
	Support for Sharding
	Distribution of Shards over a Collection of Machines
	Distributed Generation of Exploratory Datasets
	Encoding Records in Myriad Formats

	Interoperation with Analytics Engines [RQ-1, RQ-3]
	Comparison of Anamnesis with Canonical HDFS
	Handling Memory Contention


	System Benchmarks
	Experimental Setup
	Dataset Filtering
	Histogram Generation
	Model Fitting

	Related Work
	Conclusion and Future Work
	Future Work
	Experimental Reproducability

	References
	Biographies
	Daniel Rammer
	Thilina Buddhika
	Matthew Malensek
	Shrideep Pallickara
	Sangmi Lee Pallickara


